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Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Strasse 1
85748 Garching, Germany
E-mail: t.w.haensch@physik.uni-muenchen.de

Takeshi Kamiya
Ministry of Education, Culture, Sports
Science and Technology
National Institution for Academic Degrees
3-29-1 Otsuka, Bunkyo-ku
Tokyo 112-0012, Japan
E-mail: kamiyatk@niad.ac.jp

Ferenc Krausz
Vienna University of Technology
Photonics Institute
Gusshausstrasse 27/387
1040 Wien, Austria
E-mail: ferenc.krausz@tuwien.ac.at
and
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Strasse 1
85748 Garching, Germany

Bo Monemar
Department of Physics
and Measurement Technology
Materials Science Division
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Preface

The Kramers-Kronig relations constitute the mathematical formulation of the
fundamental connection between the in-phase to the out-of-phase response of
a system to a sinusoidal time-varying external perturbation. Such connection
exists in both classical and quantum physical systems and derives directly
from the principle of causality.

Apart from being of great importance in high energy physics, statistical
physics, and acoustics, at present the Kramers-Kronig relations are basic and
widely-accepted tools for the investigation of the linear optical properties
of materials, since they allow performing the so-called inversion of optical
data, i.e. acquiring knowledge on dispersive phenomena by measurements of
absorptive phenomena over the whole energy spectrum or vice versa.

Since the late ’80s, a growing body of theoretical results as well as of
experimental evidences has shown that the Kramers-Kronig relations can be
adopted for efficiently acquiring knowledge on nonlinear optical phenomena.
These results suggest that the Kramers-Kronig relations may become in a
near future standard techniques in the context of nonlinear spectroscopy.

This book is the first comprehensive treatise devoted to providing a unify-
ing picture of the physical backgrounds, of the rigorous mathematical theory,
and of the applications of the Kramers-Kronig relations in both fields of lin-
ear and nonlinear optical spectroscopy. Some basic programs written for the
MATLAB�1 environment are also included.

This book is organized as an argumentative discourse, progressing from
the linear to the nonlinear phenomena, from the general to the specific sys-
tems, and from the theoretical to the experimental results.

This book is intended to all those who are interested and involved in
optical materials research such as physicists, chemists, engineers, as well as
scientists working in cross-disciplinary fields having contact points with op-
tical materials research.

We hope that this effort will form a baseline for future theoretical and
experimental research and technological applications related to wide spectral
range nonlinear optical properties.

The authors wish to thank F. Bassani for having encouraged the prepa-
ration of this book and S. Scandolo for having provided suggestions on an
1 MATLAB� is a registered trademark of The MathWorks Inc.
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early version. V. L. wishes to thank A. Speranza for continuous support. V.
L., J. J. S., and K.-E. P. wish to thank the Academy of Finland for finan-
cial support. The financial support of the Finnish Academy of Science and
Letters is greatly appreciated.

Joensuu, Camerino, Toronto, and Lappeenranta Valerio Lucarini
November 11, 2004. Jarkko J. Saarinen

Kai-Erik Peiponen
Erik M. Vartiainen
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1 Introduction

Optical spectroscopy has been a fundamental method of investigation in opti-
cal material research for a long time thanks to its nondestructive nature and
its robust devices, which are commercially available in many cases. Recording
of the wavelength-dependent optical spectrum is in general probably the best
and most important tool in the analysis of the different constituents of any
medium. Spectrophotometers are widely used in basic research in laboratory
conditions as well as in industrial sectors, for routine quality assessment.
There is an ever-growing demand to estimate linear and nonlinear optical
spectra of various bulk and composite materials more accurately, which is
made technically possible by the continuous development of novel optoelec-
tronic devices which are used, for instance, as light sources and detectors. For
instance, the scientific as well as industrial interest in the optical properties
of novel materials such as nanocomposites comes from their widespread pres-
ence and relevant importance both in strategic engineering and life sciences
sectors. Another nonconventional and very recent area of interest for the
methodologies of optical investigation is in the field of bio-optical medicine,
where the interaction of light with different species can be exploited in novel
drug development.

In the investigation of linear optical properties, a well-known spectro-
scopic technique is transmission spectroscopy analysis, based on the utiliza-
tion of the Beer-Lambert law, where material properties are investigated by
the inspection of the height, width, and location of spectral peaks. More so-
phisticated methods of analysis rely, for instance, on the principal component
analysis of measured spectra. Unfortunately, a given experimental analysis
cannot usually provide all the optical properties of the sample investigated.
A typical example is the inability to obtain a measurement of the refractive
index of a medium with a transmission spectroscopy setup.

Fortunately, the requirement of space-time causality in the optical re-
sponse of any medium provides linear optical functions with general proper-
ties [1–3] which can be exploited in order to extract the maximum amount
of information from the experimental data on the optical properties of the
medium.

The Kramers-Kronig (K-K) relations [4, 5] and the sum rules [6–9] con-
stitute the fundamental theoretical tools of general validity which allow us
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to widen our knowledge of linear optical phenomena. K-K relations describe
a fundamental connection between the real and imaginary parts of linear
complex optical functions descriptive of light–matter interaction phenomena,
such as susceptibility, the dielectric function, the index of refraction, and re-
flectivity. The real and imaginary parts are not wholly independent but are
connected by a special form of Hilbert transforms, which are termed K-K
relations. The sum rules are universal constraints that determine the results
of integration over the infinite spectral range of the functions descriptive of
relevant optical properties of the medium under investigation. Furthermore,
the sum rules have had a key role in the initial development of quantum
mechanics. Hence, these integral properties provide constraints for checking
the self-consistency of experimental or model-generated data. Furthermore,
by applying K-K relations, it is possible to perform the so-called inversion of
optical data, i.e., to acquire knowledge on dispersive phenomena by measure-
ments of absorptive phenomena over the whole spectrum (e.g., with trans-
mission spectroscopy) or vice versa. [2,10–15]. In reflection spectroscopy, K-K
relations couple the measured reflectance and the phase of the reflectivity,
thus allowing retrieval of the phase. K-K relations have been traditionally
exploited in linear optical spectroscopy for data inversion and phase retrieval
from measured spectra of condensed matter, gases, molecules, and liquids.
Furthermore, K-K relations have played a relevant role in different fields,
such as high-energy physics, acoustics, statistical physics, and signal process-
ing. The application of K-K relation techniques has greatly increased with the
widespread adoption of computers at all levels. Actually, much of the present
knowledge of the optical properties of media has been gained by combining
measurements and K-K relations. In particular, such studies have had an out-
standing impact on the development of optoelectronic devices, for instance,
in the development of semiconducting materials for producing detectors of
electromagnetic radiation

Linear optics provides a complete description of light–matter interaction
only in the limit of weak radiation sources. When we consider more powerful
radiation sources, the phenomenology of the interaction is much more com-
plex, since entirely new classes of processes can be observed experimentally.
Since the 1960s, the advent of laser technology permitted the observation of
nonlinear phenomena in optical frequencies, e.g., harmonic-generation, mul-
tiphoton absorption, the Kerr effect, and Raman scattering. These phenom-
ena are produced by the “simultaneous” interaction of matter with several
photons. Under quite general hypotheses of the validity of the perturbative
approach [16, 17], the nth-order nonlinear optical properties of any material
can be completely described by corresponding nth-order nonlinear suscepti-
bilities [17–19], which are related to the higher order dynamics of an optical
system. Recently, theoretical advances have permitted us to frame in very
general terms the possibility of establishing K-K relations for nonlinear op-
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tical phenomena [20–26] by determining the class of susceptibility functions
that obey K-K relations and sum rules up to any order of nonlinearity.

In spite of the ever-increasing scientific and technological relevance of
nonlinear optical phenomena, relatively little attention has been paid for a
long time to the experimental investigation of K-K relations and sum rules of
corresponding nonlinear susceptibilities [27–30]. Research has usually focused
on achieving high resolution in both experimental data and theoretical calcu-
lations, although these integral properties are especially relevant for experi-
mental investigations of frequency-dependent nonlinear optical properties. In
the context of this class of experiments, K-K relations and sum rules could
provide information on whether or not a coherent, common picture of the
nonlinear properties of the material under investigation is available [31–34].
The technical problem of measuring the nonlinear excitation spectrum on a
relatively wide frequency range, which has been relaxed by the improvements
in tunable laser technology, is probably the single most important reason why
experimental research in this field has been subdued for a long time.

In this book, we present a detailed analysis of linear and nonlinear opti-
cal systems and describe the general integral properties of the susceptibility
functions descriptive of optical processes. We deduce rigorously very general
K-K dispersion relations and sum rules, and we present the generalization
of these integral relations for various kinds of optically linear and nonlinear
systems, also including nanostructures. We then describe the applications
of K-K relations and sum rules to actual measurements for performing the
inversion of optical data and for testing the self-consistency of the spectra
of nonlinear optical materials. In addition, we consider the utilization of the
maximum entropy method in phase retrieval problems such as those in the
new field of terahertz spectroscopy. In the appendix, we also present some
simple programs written for the MATLAB� environment that may be used
for K-K analysis of data.

We adopt the cgs system of units because it entails great simplification in
many formulas. A complete report on how to convert equations and amounts
between the cgs and the MKS system is given in Appendix 4 of the classical
treatise by Jackson [35].

This book is intended for all those who are interested and involved in
optical materials research such as physicists, chemists, engineers and also
scientists working in cross-disciplinary fields that have contact points with
optical materials research.



2 Electrodynamic Properties
of a General Physical System

2.1 The Maxwell Equations

Midway through the nineteenth century, Maxwell combined Coulomb’s re-
sults on the forces between charged particles and Faraday’s investigations
on the effects of currents and magnetic fields into four partial differential
equations, which reveal the electromagnetic nature of light. Maxwell realized
that the solution to the equations of electromagnetism can be expressed as a
transverse electromagnetic field [36]. Maxwell’s hypothesis was confirmed in
1887 by Hertz who was able to produce and to detect electromagnetic waves.

The Maxwell equations relate the space and time derivatives of electric
and magnetic fields to each other throughout a continuous medium. In this
section, we present only the main definitions and results which are needed for
the scope of this work; for a detailed description of electromagnetic theory
see, e.g. [37, 38]. If we adopt cgs units, Maxwell equations can be expressed
as follows [37]:

∇ · D(r, t) = 4πρ(r, t), (2.1)

∇ · B(r, t) = 0, (2.2)

∇ × E(r, t) = −1
c

∂

∂t
B(r, t), (2.3)

∇ × H(r, t) =
4π

c
J(r, t) +

1
c

∂

∂t
D(r, t), (2.4)

where r is the three-dimensional coordinate vector and t indicates time. Here
D(r, t) denotes the electric displacement, ρ(r, t) the charge density, B(r, t)
the magnetic induction, E(r, t) the electric field, H(r, t) the magnetic field,
and J(r, t) the current density. Electric displacement and Magnetic induction
are connected to electric and magnetic fields, respectively, by the constitutive
equations

D(r, t) = E(r, t) + 4πP (r, t), (2.5)

B(r, t) = H(r, t) + 4πM(r, t), (2.6)

where P (r, t) and M(r, t) are the polarization and magnetization of the
medium, respectively. These quantities describe the response of the medium
to an applied electromagnetic field. If we apply the Fourier transform [39] for
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both space and time to the Maxwell equations, we obtain the following set
of equations:

k · D(k, ω) = 4πρ(k, ω), (2.7)

k · B(k, ω) = 0, (2.8)

k × E(k, ω) =
ω

c
B(k, ω), (2.9)

k × H(k, ω) = −4iπ
c

J(k, ω) − ω

c
D(k, ω), (2.10)

where k and ω are the wave vector and the angular frequency of the electro-
magnetic field, respectively.

At optical frequencies, materials are usually nonmagnetic and magneti-
zation can be omitted, so that H(k, ω) = B(k, ω). Under this fairly good
approximation, the optical response of a medium to an electromagnetic per-
turbation is completely described by the constitutive relation between polar-
ization and the electric field inducing it.

2.2 The System:
Lagrangian and Hamiltonian Descriptions

We consider a volume V containing N electrons with charge −e that interact
with a time-dependent electromagnetic field and are subjected to a static
scalar potential and to mutual repulsion. The nonrelativistic Lagrangian of
the system can then be written as [17,38]

L =
N∑

α=1

m
ṙα · ṙα

2
−

N∑
α=1

V (rα)−
N∑

α�=β=1

e2

|rα − rβ|−
N∑

α=1

e

c
ṙα·A(rα, t), (2.11)

where r is the vector denoting the spatial position, A is the vector potential of
the external electromagnetic field, α is the index of the single particle, c is the
speed of light in vacuum, and the dot indicates the temporal derivative. We
recall that using the Coulomb gauge, we can establish the following relation
between the external vector potential A(r, t) and the external electric field
E(r, t) [35,38]:

E(r, t) = −1
c

∂

∂t
A(r, t). (2.12)

Using the conventional Legendre trasformation [40], we obtain

ṙα =
1
m

pα − e

mc
A(rα, t). (2.13)

The corresponding nonrelativistic Hamiltonian H governing the dynamics of
the system is given by the sum of two terms,
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H = H0 + HI , (2.14)

where the first term is the unperturbed, time-independent Hamiltonian

H0 = T + V + Hee =
N∑

α=1

pα · pα

2m
+

N∑
α=1

V (rα) +
N∑

α�=β=1

e2

|rα − rβ| , (2.15)

where T , V , and Hee are, respectively, the total kinetic energy, the total
one-particle potential energy, and the electron–electron interaction potential
energy of the electrons. The second term is the Hamiltonian of the interaction
of electrons with an electromagnetic field:

HI =
N∑

α=1

{
e

2mc
[pα · A (rα, t) + A (rα, t) · pα] +

e2A (rα, t) · A (rα, t)
2mc2

}
,

(2.16)
where we have symmetrized the scalar product between the vector potential
and the conjugate moments [17], since [A(rα, t),pα] �= 0, with the usual
definition of the commutator [a, b] = ab − ba.

The dynamics of the system does not change if we add a total time deriva-
tive [40] to the original Lagrangian (2.11), so that a wholly equivalent La-
grangian is

L̃ = L +
d
dt

[
N∑

α=1

e

c
ṙα · A(rα, t)

]

=
N∑

α=1

m
ṙα · ṙα

2
−

N∑
α=1

V (rα) −
N∑

α�=β=1

e2

|rα − rβ| −
N∑

α=1

e

c
rα · d

dt
A(rα, t).

(2.17)

If we apply the Legendre transformation, we obtain a new Hamiltonian func-
tion H̃, which is fully equivalent to H:

H̃ = H0 + H̃I , (2.18)

where H0 is the same as in (2.15), while we have a new form of the Hamil-
tonian describing the interaction between an external electromagnetic field
and electrons:

H̃I = −
N∑

α=1

e

c
rα · d

dt
A(rα, t). (2.19)

The two interaction Hamiltonians (2.16) and (2.19) are then totally equivalent
and can be used interchangeably [41].

If we assume dipolar approximation [14], which we will later describe in
Sect. 3.2, we can neglect the spatial dependence of the vector potential A, so
that it is only a function of time. Hence,
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[A(t),pα] = 0, ∀α. (2.20)

We then find that the interaction Hamiltonian (2.16) can be written as

Ht
I =

N∑
α=1

[
e

mc
pα · A(t) +

e2A(t) · A(t)
2mc2

]
. (2.21)

Expression (2.21) describes light–matter interaction in the so-called gauge of
velocity.

We wish to emphasize that in the dipolar approximation we can find a very
instructive expression for the interaction Hamiltonian (2.19) that involves the
conventional dipole–electric field interaction. Considering that in the dipolar
approximation, the constitutive relation (2.12) can be written as

E(t) = −1
c
∂tA(t), (2.22)

and noting that when spatial dependence is neglected, the total and partial
time derivatives can be identified, so that

d
dt

A(t) = ∂tA(t), (2.23)

we find that the interaction Hamiltonian (2.19) can eventually be expressed
as

H̃t
I = e

N∑
α=1

rα · E(t). (2.24)

Expression (2.24) is often referred to as the interaction Hamiltonian in the
gauge of length. The notation on the temporal dependency of the interaction
Hamiltonian functions (2.21) and (2.24) depends on the fact that we want
to emphasize the choice of dipolar approximation, which implies that the
external fields are only time-dependent.

We emphasize that, even if we are guaranteed that the physics described
by the two gauges is exactly the same, the two gauges have very different per-
formance when adopted in calculations for real systems. In fact, the equiva-
lence is respected only if a truly complete set of eigenstates of the unperturbed
Hamiltonian is considered for the intermediate states in the calculations. In
actual numerical evaluations of the behavior of real systems, it is impossible
to use complete sets. Therefore, the issue of evaluating the relative efficiency
of the length and velocity gauge for approximate calculations is of crucial
importance. Detailed calculations performed on simple atoms shows that the
length gauge tends to outperform the velocity gauge and provides better
convergence when relatively few intermediate states are considered [42,43].
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2.3 Polarization as a Statistical Property of a System

All statistical properties of a general quantum system of electrons can be
described in terms of the density operator ρ [11] defined as

ρ =
∑
a,b

ρab|a〉〈b|, (2.25)

where the |a〉s constitute a complete set of normalized (〈ai|aj〉 = δij) eigen-
states of the unperturbed, time-independent Hamiltonian H0 in the Hilbert
space of N indistinguishable fermionic particles and the coefficients ρab de-
scribe the statistical mixture. The density is normalized to 1 by imposing that

Tr{ρ} =
∑

a

ρaa = 1. (2.26)

We define the expectation value of the operator O as

Tr{Oρ} =
∑

a

Oabρba, (2.27)

where we have considered the usual definition Oab = 〈a|O|b〉. The electric po-
larization can then be defined as the expectation value of the dipole moment
per unit volume [11,18,19,35],

P (t) =
1
V

Tr

{∑
a

−erαρ(t)

}
, (2.28)

where ρ(t) is the evolution of the density matrix of the system at time t,
with the initial condition given by the Boltzmann equilibrium distribution,

ρ(0) =

∑
a

exp(−Ea/KT )|a〉〈a|∑
a

exp(−Ea/KT )
. (2.29)

We assume that the material under examination has no permanent electrical
dipole at the thermodynamic equilibrium

1
V

Tr

{∑
α

−erαρ(0)

}
= 0. (2.30)

In this study, we ignore the effects of natural radiative decay and noise-
induced quantum dephasing at a dynamic level [17]. Hence, we consider a
purely semiclassical treatment of the light–matter interaction, so that ρ(t)
obeys the Liouville differential equation [18], where the relaxation terms are
set to zero:

i�∂tρ(t) = [H, ρ(t)] = [H0, ρ(t)] +
[
Ht

I , ρ(t)
]
, (2.31)
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with boundary condition (2.29) at time t = 0. We can solve (2.31) using a
perturbative approach, and we can write ρ(t) as a sum consisting of terms
of decreasing magnitude:

ρ(t) = ρ(0) + ρ(1)(t) + . . . + ρ(n)(t) + . . . (2.32)

Substituting (2.32) in (2.31) and equating the terms of the same order, we
obtain a concatenated system of coupled differential equations:

i∂tρ
(1)(t) =

[
H0, ρ

(1)(t)
]

+
[
Ht

I , ρ(0)
]
,

. . .

i�∂tρ
(n)(t) =

[
H0, ρ

(n)(t)
]

+
[
Ht

I , ρ
(n−1)(t)

]
.

. . .

(2.33)

Inasmuch as the initial condition of (2.31) is given by (2.30), ρ(n)(0) = 0 for
each n > 0.

Correspondingly, we can express the total polarization P (t) as the sum
of terms of decreasing magnitude:

P (t) =
∞∑

j=1

P (j)(t) =
∞∑

j=1

1
V

Tr

{∑
a

−erαρ(j)(t)

}
, (2.34)

where the jth term P (j)(t) describes the jth-order nonlinear optical response
of the material to an external electromagnetic field.

Note that the validity of the perturbative approach is related to the as-
sumption that the absolute value of an oscillating electric field affecting elec-
trons is much smaller than a characteristic static electric field due to inter-
actions with the nucleus and with other electrons.



3 General Properties
of the Linear Optical Response

3.1 Linear Optical Properties

Linear polarization P (1)(r, t) provides an extensive description of light–
matter interaction when low radiation intensities are considered. We will
consider in a later chapter the effects coming into play when we consider
more intense light sources. In general, it is possible to express linear polar-
ization by the following convolution [14]:

P
(1)
i (r, t) =

∫
R3

∞∫
−∞

G
(1)
ij (r − r′, t − t′)Eloc

j (r′, t′)dt′dr′, (3.1)

where Eloc(r, t) is the local electric field induced by an external perturbation
acting in location r at time t and the tensor G

(1)
ij (r, t) is the linear Green

function accounting for the dynamic response of the system to the presence
of an external electric field.

We emphasize that polarization is a macroscopic quantity, which derives
from a suitably defined small-scale spatial average of a corresponding mi-
croscopic quantity, polarizability [35, 38, 44, 45]. Polarizability describes the
distortion of a dipole field on an atomic scale induced by interaction with
an external oscillating field. Geometry suggests that the ratio between po-
larization and polarizability is simply the number of elementary components
of the medium per unit volume. This is not precisely the case, since in the
definition of the averaged macroscopic quantity, not only the external applied
field but also the local dipole fields induced by single elementary components
of the medium yield contributions [44–48]. Therefore, the electric field induc-
ing polarization is not the macroscopic external field of incoming radiation.
This implies that Eloc(r, t) �= E(r, t), where the latter is the external elec-
tric field of incoming radiation. The concept of a local field was originally
introduced by Lorentz [49]. In the derivation of the main properties of the
linear optical response, we will ignore local field corrections and assume that
Eloc(r, t) ∼ E(r, t). In Sect. 3.4, we will deal with local field effects and show
how their inclusion affect our results.

We compute the Fourier transform in the time and space domains of both
members of the expression (3.1), and considering that the Fourier transform
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of the convolution of two functions is the conventional product of the Fourier
transforms of the two functions [39], we obtain

P
(1)
i (k, ω) = Φ

{
F
[
P

(1)
i (r, t)

]}
= Φ

{
F
[
G

(1)
ij (r, t)

]}
Φ {F [Ej (r, t)]}

= χ
(1)
ij (k, ω) Ej (k, ω) ,

(3.2)

where Φ and F indicate the application of the Fourier transform in the 3-D
space domain and in the time domain, respectively, and where we define the
linear susceptibility of the system as

χ
(1)
ij (k, ω) = Φ

{
F
[
G

(1)
ij (r, t)

]}
. (3.3)

If we apply the Fourier transform in the space and time domains to the first
constitutive equation presented in (2.5) and consider only the linear effects,
we obtain

D(1)(k, ω) = E(k, ω) + 4πP (1)(k, ω). (3.4)

If we insert into (3.4) the result presented in (3.2) for linear polarization, we
derive the following expression for each component of the electric displace-
ment vector:

D
(1)
i (k, ω) =

[
δij + 4πχ

(1)
ij (k, ω)

]
Ej(k, ω), (3.5)

where δij is the Kronecker delta, whose value is 1 if i = j and 0 if i �= j. Thus,
the constitutive relation between the electric displacement and the electric
field can be expressed as follows:

D
(1)
i (k, ω) = εij(k, ω)Ej(k, ω), (3.6)

where εij(k, ω) is the linear dielectric tensor.
If we consider an isotropic medium or a medium with cubic symmetry,

the susceptibility (3.3) and the dielectric (3.6) tensors are diagonal in all
coordinate systems [37]. Therefore, they can be expressed in the following
way:

χ
(1)
ij (|k| , ω) = δijχ

(1)(|k| , ω), (3.7)

εij(|k| , ω) = δijε(|k| , ω), (3.8)

where |k| is the length of the vector k. If the susceptibility tensor is in the
form (3.7), we can treat the linear susceptibility and the dielectric function
as scalar quantities:

P (1)(k, ω) = χ(1) (|k| , ω) E(k, ω), (3.9)

D(1)(k, ω) = ε (|k| , ω) E(k, ω). (3.10)
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In such a case and if we assume that no sources are present (i.e. ρ(k, ω) =
Ji(k, ω) = 0,∀i), it is possible to derive the electromagnetic wave equations
straightforwardly [35,38], thus obtaining for the electric field,

|k|2 E (k, ω) = ε (|k| , ω)
ω2

c2 E (k, ω) . (3.11)

This implies that the following dispersion relation holds:

|k|2 = ε (|k| , ω)
ω2

c2 . (3.12)

Hence, each monochromatic component of the radiation wave can be writ-
ten as

Eω(r, t) = êEω exp
[
i
ω

c

(
c |k|
ω

k̂ · r − ct

)]
+ c.c. (3.13)

Bω(r, t) =
c

ω
k × Eω (r, t) , (3.14)

where the unit vector ê gives the polarization of light, k̂ is the unit vector in
the direction of k, and Eω is a constant amplitude. The electric and magnetic
fields are orthogonal to k, as implied by the two Maxwell equations (2.7)–
(2.8) with no sources. The modulus of the wave vector k can be expressed as
a function of ω, thanks to the dispersion relation (3.12), so that we obtain

Eω(r, t) = êEω exp
{

i
ω

c

[√
ε (|k| , ω)k̂ · r − ct

]}
+ c.c.

= êEω exp
{

i
ω

c

[
N (|k| , ω) k̂ · r − ct

]}
+ c.c.

= êEω exp
{

i
ω

c

[
η (|k| , ω) k̂ · r − ct

]}
× exp

[
−ω

c
κ(|k| , ω)k̂ · r

]
+ c.c.,

(3.15)

where we have introduced the customary notation for the index of refrac-
tion [35],

N(|k| , ω) =
√

ε(|k| , ω)

= Re
{√

1 + 4πχ(1)(|k| , ω)
}

+ iIm
{√

1 + 4πχ(1)(|k| , ω)
}

= η(|k| , ω) + iκ(|k| , ω).
(3.16)

Here Re and Im indicate the real and imaginary parts, respectively. The
index of refraction, defined as the square root of a complex function of the
variable ω, is in general a complex function, so that we can define its real
and imaginary parts. The real part of the index of refraction, η(|k| , ω), is
responsible for dispersive optical phenomena, since (3.15) implies that phase
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velocity of a traveling wave (3.13) is v(|k| , ω) = c/η(|k| , ω). The imaginary
part, κ(|k| , ω), is related to the phenomena of light absorption, since it
introduces a nonoscillatory real exponential which describes an extinction
process. Using definition (3.16), we can find the following equations relating
the real and imaginary parts of the index of refraction and of susceptibility

Re{ε(|k| , ω)} = [η(|k| , ω)]2 − [κ(|k| , ω)]2 , (3.17)

Im{ε(|k| , ω)} = 2η(|k| , ω)κ(|k| , ω). (3.18)

3.1.1 Transmission and Reflection at the Boundary
Between Two Media

Suppose that a monochromatic electromagnetic plane wave with frequency
ω of the form (3.15) arrives at the boundary of two media with refractive
indices N1(|k1| , ω) and N2 (|k2| , ω) at x = 0, as presented in Fig. 3.1. The
structure is assumed to be invariant in the y-direction, and the components
of the electromagnetic wave can be expressed in the form

E = Ei/r/t(x, z, t) = Ei/r/t exp
[
i
(
ki/r/t

x · x + ki/r/t
z · z − ω · t

)]
, (3.19)

H = Hi/r/t(x, z, t) = Hi/r/t exp
[
i
(
ki/r/t

x · x + ki/r/t
z · z − ω · t

)]
, (3.20)

where the indices i, r, and t refer to the incoming, reflected, and transmit-
ted fields, respectively. Starting with the Maxwell equations, two different
cases can be considered. In the case of TE-polarized light, the electric field
oscillates perpendicularly to the plane of incident and reflected beams, i.e.,
in the y-direction. In the case of TM-polarized light, the electric field oscil-
lates in the plane (x, z) of the beams. Obviously, at normal incidence, the
TE/TM decomposition is lost. The angle of the reflected beam equals the
angle of incidence, and the angle of the refracted beam can be derived from
the following equation:

N1(|k1| , ω) sin ϕi = N2 (|k2| , ω) sin ϕt, (3.21)

which can be derived from the boundary conditions [35] and constitutes the
generalization of the Snell law to the complex case.

In the case of TE-polarized light, the boundary conditions imply that the
y-component of the electric field and the z-component of the magnetic field
are continuous. These conditions can be expressed as

|Ei| + |Er| = |Et| , (3.22)

|Ei|N1(|k1| , ω) cos ϕ1 + |Er|N1(|k1| , ω) cos ϕ1 = |Et|N2 (|k2| , ω) cos ϕ2.
(3.23)
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Fig. 3.1. Geometry for the derivation of Fresnel’s equations

Using the fact that ϕi = ϕr, it is possible to obtain Fresnel’s amplitude
reflection coefficient for TE-polarized light as

rTE(ω) =
( |Er|

|Ei|
)

TE
=

N1(|k1| , ω) cos ϕi − N2 (|k2| , ω) cos ϕt

N1(|k1| , ω) cos ϕi + N2 (|k2| , ω) cos ϕt
, (3.24)

and the amplitude transmission coefficient as

tTE(ω) =
( |Et|

|Ei|
)

TE
=

2N1(|k1| , ω) cos ϕi

N1(|k1| , ω) cos ϕi + N2 (|k2| , ω) cos ϕt
. (3.25)

For TM-polarized light, the z-component of the electric field and the
y-component of the magnetic field are continuous.These conditions can be
expressed as

|Ei| cos ϕi − |Er| cos ϕr = |Et| cos ϕt, (3.26)

|E1|N1(|k1| , ω) + |Er|N1(|k1| , ω) = |Et|N2(|k1| , ω). (3.27)

The amplitude reflection and transmission coefficients for TM-polarized light
result in the following:

rTM(ω) =
( |Er|

|Ei|
)

TM
=

N2 (|k2| , ω) cos ϕi − N1(|k1| , ω) cos ϕt

N2 (|k2| , ω) cos ϕi + N1(|k1| , ω) cos ϕt
, (3.28)

tTM(ω) =
( |Et|

|Ei|
)

TM
=

2N1(|k1| , ω) cos ϕi

N1(|k1| , ω) cos ϕi + N2 (|k2| , ω) cos ϕt
. (3.29)

These results are traditionally known as Fresnel’s equations and are used
in calculations of the reflectance and transmittance through the boundaries.
Furthermore, they are used to take into account the possible phase shifts
occurring at the boundary.
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3.2 Microscopic Description of Linear Polarization

In this work, we assume that the physics of the system does not depend
appreciably on k; this is equivalent to considering that the wave vectors obey
the following constraint:

|k| |d| � 1, (3.30)

where |d| is of the order of the dimensions of the characteristic elementary
constituent of the system, the atoms and the molecules for the gases and
liquids, and the elementary crystalline cells for the solids. We then ignore the
spatial dispersion effects in all calculations, so that we drop all the r in (3.1).

According to the expression (2.34), the linear response of a system can
be described by considering the evolution of the first-order term ρ(1)(t) in
the system of differential equations (2.33). This is a first-order differential
equation that can be solved with the method of the variation of arbitrary
constants. We follow [18] and use the length gauge formulation (2.24) for the
interaction Hamiltonian. We then derive the following expression for linear
polarization:

P
(1)
i (t) =

∞∫
−∞

G
(1)
ij (τ)Ej(t − τ)dτ

= − e2

i�V

∞∫
−∞

Ej(t − τ)θ(τ)Tr

{[
N∑

α=1

rα
j (−τ)

N∑
α=1

rα
i

]
ρ(0)

}
dτ,

(3.31)

where we have introduced the usual Heaviside function θ(t) and obtained the
following expression for the linear Green function of the system:

G
(1)
ij (t) = − e2

i�V
θ(t)Tr

{[
N∑

α=1

rα
j (−t)

N∑
α=1

rα
i

]
ρ(0)

}
, (3.32)

which is nil if t < 0. We have used the interaction representation for the
evolution of the position operators

rα
j (−t) = exp

[
iH0(−t)

�

]
rα
j exp

[
− iH0(−t)

�

]
. (3.33)

Polarization is the convolution of two functions depending only on time vari-
ables, and therefore its Fourier transform is the ordinary product of the tem-
poral Fourier transforms of the two functions

P
(1)
i (ω) = F

[
P

(1)
i (t)

]
= χ

(1)
ij (ω)Ej(ω). (3.34)

Expression (3.34) corresponds to the limit |k| → 0 of expression (3.2). We
note that the adoption of the dipolar approximation implies that all linear
optical functions deriving from linear susceptibility or, equivalently, from the
linear dielectric function, are taken as dependent only on the variable ω.
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3.3 Asymptotic Properties of Linear Susceptibility

We emphasize that the semiclassical approach we have adopted in this work
does not permit a detailed representation of absorption phenomena because
evolution in our treatment is driven by purely Hermitian operators. As is
well known [14, 18, 19, 50], this approximation implies that absorption peaks
are essentially Dirac δ-functions centered on transition frequencies. In a more
precise picture, the δ-functions are substituted by Lorentzian functions when
a finite lifetime is introduced. The asymptotic behavior of total susceptibility
turns out to be related only to the real part since the imaginary part decreases
much faster with frequency.

From the standard Fourier transform theory, we see that

F
[
(−t)k

k!
θ(t)

]
=

∞∫
−∞

(−t)k

k!
θ(t)eiωtdt =

ik

k!
dk

dωk

[
iP

1
ω

+ πδ(ω)
]

, (3.35)

where P indicates that the principal part is considered. If we consider asymp-
totic behavior for large values of ω, we can drop δ(ω) and its derivatives as
well as the principal part, because they are relevant only for ω = 0, thus
obtaining

F
[
(−t)k

k!
θ(t)

]
≈ −(−i)k+1 1

ωk+1 . (3.36)

This implies that in order to deduce information on the asymptotic behavior
of susceptibility, we must analyze the short-term behavior of the response
function. Considering that by definition the relaxation processes are not im-
portant on the shortest timescales of the system, we have a relevant concep-
tual argument that supports the assumption that a purely Hermitian Hamil-
tonian operator does not affect the leading asymptotic behavior of linear
susceptibility.

From the Heisenberg equations, we can deduce that for short times, the
following Taylor expansion holds:

rα
j (−t) =

∞∑
k=0

aα
k,j

(−t)k

k!
, (3.37)

where

aα
k,j = −

(
1
i�

)[
H0, a

α
k−1,j

]
, aα

0,j = rα
j . (3.38)

Substituting expression (3.37) in the linear Green function (3.32) and adding
on the index α, we obtain the following infinite Taylor expansion:

G
(1)
ij (t) =

∞∑
k=0

Ak
ijθ(t)

(−t)k

k!
, (3.39)
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with the following definition for the tensorial coefficients:

Ak
ij = − e2

i�V
θ(t)Tr

{[
N∑

α=1

aα
k,j ,

N∑
α=1

rα
i

]
, ρ(0)

}
. (3.40)

Applying the Fourier transform to the Taylor expansion of the Green function
(3.39) and considering the result (3.36), we obtain the result that for large
values of ω, the linear susceptibility can be written as

χ
(1)
ij (ω) ≈ e2

i�V

∞∑
k=0

Tr

{[
N∑

α=1

aα
k,j ,

N∑
α=1

rα
i

]
ρ0

}
(−i)k+1 1

ωk+1

=
∞∑

k=0

Ak
ij(−i)k+1 1

ωk+1 .

(3.41)

Therefore, the leading term in the asymptotic expansion of the linear suscep-
tibility can be found by determining which is the lowest value of k such that
the tensorial coefficient (3.40) does not vanish.

When considering k = 0 in expression (3.40), we see that

A0
ij = − e2

i�V
Tr

{[
N∑

α=1

rα
j

N∑
α=1

rα
i

]
, ρ0

}
= 0, (3.42)

since it involves the commutator of two purely spatial variables. The value
of the k = 1 coefficient in expression (3.40) is

A1
ij =

e2

i�V
Tr

{[
1
i�

[
H0,

N∑
α=1

rα
j

]
N∑

α=1

rα
i

]
, ρ0

}

=
e2

i�V
Tr

{[
−

N∑
α=1

pα
j

m
,

N∑
α=1

rα
i

]
ρ0

}

=
e2N

V m
Tr {δijρ0} =

e2N

mV
δij =

ω2
p

4π
δij ,

(3.43)

where we have considered that the trace of the density matrix is 1 and we have
introduced the plasma frequency with the usual notation ωp. Therefore, we
find that, asymptotically, the susceptibility tensor is diagonal and decreases
as ω−2:

χ
(1)
ij (ω) ≈ −ω2

p

4π
δij

1
ω2 + o(ω−2), (3.44)

where o(ω−2) indicates all terms having an asymptotic decrease strictly faster
than ω−2.

We can observe that the asymptotic term in (3.44) is isotropic and does
not contain physical parameters other than the electron charge, mass, and
density, thus excluding the quantum parameter �. This implies that, if the
material interacts with high-frequency radiation, it behaves universally like
a classical free electron gas with the same density.
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3.4 Local Field and Effective Medium Approximation
in Linear Optics

The response of a medium to an external electric field cannot be described
exactly by means of macroscopic electric fields. The external field drives the
bound charges of the medium apart and induces a collection of dipole mo-
ments [51]. In an optically dense medium, interaction of the induced dipoles
is taken into account by a local field factor, which relates the macroscopic
fields to the local ones.

Conventionally, the local field is considered by starting from the macro-
scopic properties of the medium (see, for instance, [44]). Unfortunately, such
an approach lacks generality and does not provide any insight into the phys-
ical principles responsible for the dielectric properties of the medium. Alter-
natively, it is possible to arrive at macroscopic properties by averaging the
microscopic response over the volume investigated [46]. Recently, a rigorous
derivation of the local field corrections was provided with the aid of parti-
cle correlations [49]. Furthermore, this rigorous proof is valid for effective
dielectric functions of mixtures as well.

For our purposes, the macroscopic approach is suitable. In order to avoid
a cumbersome presentation, we have chosen to develop a scalar theory, which
corresponds to treating isotropic matter. Nevertheless, it can be immediately
seen that the very same conclusions apply to a full tensorial theory.

3.4.1 Homogeneous Media

For materials with linear optical responses, the local field determines the
microscopic polarization p, expressed as the product of the local electric field
times the polarizability α(ω) of a single microscopic constituent:

p(ω) = α(ω)Eloc(ω). (3.45)

Macroscopic polarization of the medium is derived by averaging (3.45) over
the volume V investigated, as follows [46]:

P (ω) =
1
V

∫
V

p(ω)dV = ℵα(ω)Eloc(ω), (3.46)

where dV is the unit volume for integration and ℵ is the density of microscopic
constituents. We emphasize that if we consider a homogeneous medium,

neℵ =
N

V
, (3.47)

where N/V is the number of electrons per unit volume and ne is the number
of electrons per elementary constituent of the medium. On the other hand,
polarization can be expressed in terms of the external electromagnetic field
as follows:
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P (ω) = χ
(1)
eff (ω)E(ω). (3.48)

Hence, in order to express the effective susceptibility in terms of the micro-
scopic polarizability, we have to express the local electric field in terms of the
external electric field. The local electric field can be expressed as follows [44]:

Eloc(ω) = E(ω) +
4π

3
P (ω). (3.49)

By inserting the definition of macroscopic polarization (3.46) into (3.49), we
obtain

Eloc(ω) = E(ω) +
4π

3
ℵα(ω)Eloc(ω)

=
1
3

{3E(ω) + [ε(ω) − 1]E(ω)} =
ε(ω) + 2

3
E(ω),

(3.50)

The combination of (3.4)–(3.6) and (3.50) and the use of the definition of the
local field yields the result

4π

3
ℵα(ω) =

ε(ω) − 1
ε(ω) + 2

, (3.51)

which is known as the classical Clausius-Mossotti equation [35, 38]. The
local field factor corrects the values ε(ω) − 1 that are calculated without the
presence of a local field, e.g., in dilute gases [17].

We can redefine the constitutive relation between induced macroscopic
polarization P (1)(ω) and applied external field E(ω) presented in (3.34) as
the following:

P (1)(ω) = χ
(1)
eff (ω)E(ω), (3.52)

where the linear macroscopic susceptibility χ
(1)
eff (ω) is related to the linear

microscopic polarizability α(ω) by the following equation descriptive of local
field effects, which is equivalent to expression (3.51):

χ
(1)
eff (ω) =

ℵα(ω)
1 − 4π

3 ℵα(ω)
. (3.53)

If the density ℵ is small, χ
(1)
eff (ω) ∼ ℵα(ω). The linear susceptibility χ(1)(ω)

presented in (3.41) is linear with density, so that it precisely obeys this ap-
proximation:

χ(1)(ω) = ℵα(ω). (3.54)

Therefore, we can establish the following functional dependence between the
effective macroscopic susceptibility and the susceptibility we computed in
(3.41)

χ
(1)
eff (ω) =

χ(1)(ω)
1 − 4π

3 χ(1)(ω)
. (3.55)
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Inserting the asymptotic behavior of susceptibility (3.44) into (3.55), we de-
duce that χ

(1)
eff (ω) and χ(1)(ω) are asymptotically equivalent:

χ
(1)
eff (ω) ≈ χ(1)(ω) ≈ −ω2

p

4π

1
ω2 + o(ω−2). (3.56)

3.4.2 Two-Phase Media

The classical Clausius-Mossotti equation (3.51) can be extended to a first-
order effective-medium approximation by considering a mixture of two con-
stituents. For a two-component system, where the constituents have different
polarizabilities αa(ω) and αb(ω),

εeff(ω) − 1
εeff(ω) + 2

=
4π

3
[ℵaαa(ω) + ℵbαb(ω)] , (3.57)

where ℵi is the number of constituent dipoles per unit volume with i = a or
b. Both constituents can be expressed with the aid of (3.51):

εeff(ω) − 1
εeff(ω) + 2

= fa
εa(ω) − 1
εa(ω) + 2

+ fb
εb(ω) − 1
εb(ω) + 2

, (3.58)

where fi = ℵi/(ℵa + ℵb) denotes the volume fraction of constituent i. Equa-
tion (3.58) is the effective medium approximation, which can be used in the
derivation of the optical properties of nanostructures.

The history of research on the optical properties of nanostructures dates
back to the studies of Maxwell Garnett [52, 53], who explained the colors
induced by minute metal spheres by the effective medium theory. For exam-
ple, gold nanospheres embedded in glass display a ruby-red color due to an
anomalous absorption band [54]. Classical electromagnetism related to ran-
domly oriented nanostructures is concerned with the effective medium ap-
proximation originally provided by Bruggeman [55] (see also Landauer [56]).
The size of the constituents is assumed to be much smaller than the wave-
length of the incident light but large enough that they possess macroscopic
dielectric constants.

The Maxwell Garnett Nanosphere System

Probably the simplest case of an effective medium is the two-phase Maxwell
Garnett (MG) nanosphere system, presented in Fig. 3.2a. Solid nanospheres
are embedded in a host material, and they can be insulators, metals, or semi-
conductors and are assumed to have a size much smaller than the wavelength
of the incident light. Here we consider the case of dielectric nanospheres. In
the case of a relatively low volume fraction fi of the nanospheres embedded in
an optically linear system, it holds for the linear effective dielectric function
εeff that
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(a)

(b)

(c)

εh(ω)

εi(ω)

εa(ω)

εa(ω)

εb(ω)

εb(ω)

Fig. 3.2. Schematic diagrams of two-phased (a) Maxwell Garnett, (b) Bruggeman,
and (c) layered nanostructures

εeff(ω) − εh(ω)
εeff(ω) + 2εh(ω)

= fi
εi(ω) − εh(ω)
εi(ω) + 2εh(ω)

, (3.59)

where εi(ω) is the complex linear dielectric function of the nanospheres and
εh(ω) the corresponding quantity of the host material. Equation (3.59) treats
the constituent materials asymmetrically, i.e. the nanospheres are embedded
in the host material. The MG approximation of an effective medium [52, 53]
can be reformulated as follows:
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εeff(ω) = εh(ω)
1 + 2υ(ω)fi

1 − υ(ω)fi
, (3.60)

where υ(ω) is given by

υ(ω) =
εi(ω) − εh(ω)
εi(ω) + 2εh(ω)

. (3.61)

Two major limitations of the MG approximation are that the interaction
between nanospheres and the scattering of light are neglected. Furthermore,
the MG model does not take into account either the size or the the distance
between nanospheres, thus neglecting agglomeration and polydispersion ef-
fects. In the literature, some extended versions of the MG approximation,
which take into account the size of nanospheres, have been discussed [57,58].
However, in the frame of the conventional MG approximation, the volume
fraction of nanospheres must be relatively low (fi � 1). Nevertheless, we
note that Boyd et al. [59] used a value fi = 0.5 as an upper limit in their
theoretical study. In experimental measurements [60], the upper limit of the
volume fraction, which gives good agreement between the measured and the
predicted values, is rather small (fi ≈ 0.1). The increase in the volume frac-
tion shifts the resonance angular frequency of the nanosphere system toward
lower energies. An example of this effect in recent experimental studies on
nanostructures is the work of Dalacu and Martinu [61], who investigated the
spectral shift of the surface plasmon resonance of the nanocomposite films in
the frame of the linear optics of the MG model [62].

Unfortunately, direct measurement of the complex effective dielectric
function of an MG nanosphere system is not possible in the optical spec-
tral region. However, the reflectance of a liquid-phase MG system can be
obtained in order to calculate the complex effective dielectric function of the
liquid.

The Bruggeman Effective Medium Theory

In the framework of the MG approximation, the volume fraction of
nanospheres is restricted to relatively low values. Bruggeman [55] solved this
problem with the assumption that the inclusions are embedded in the effec-
tive medium itself and the dielectric function of the host material is replaced
by the effective dielectric function in (3.59). Such a procedure yields a sym-
metric description for the effective dielectric function [55]:

fa
εa(ω) − εeff(ω)
εa(ω) + 2εeff(ω)

+ fb
εb(ω) − εeff(ω)
εb(ω) + 2εeff(ω)

= 0, (3.62)

where a and b denote the two components having different complex dielectric
functions (εa, εb) and volume fractions (fa, fb), respectively. The effective
dielectric function is invariant if the constituents are replaced by each other,
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as opposed to the MG case. In the Bruggeman model, presented in Fig. 3.2b,
host and guest materials are indistinguishable and the system is completely
random. The Bruggeman theory has been generalized in order to account for
different shapes of inclusion by Zeng et al. [47], who proposed the following
formula:

fa
εa(ω) − εeff(ω)

εeff(ω) + g[εa(ω) − εeff(ω)]
+ fb

εb(ω) − εeff(ω)
εeff(ω) + g[εb(ω) − εeff(ω)]

= 0.(3.63)

Here, g is a geometric factor, which depends on the shape of the inclusions.
For spherical inclusions, g = 1/3 and for two-dimensional circular inclusions,
g = 1/2. In the case of g = 1/3, (3.63) reduces to the original form given
by Bruggeman [55]. The quadratic (3.63) has two explicit solutions for the
complex effective dielectric function

εeff(ω) =
−c(ω) ±√

c(ω)2 + 4g(1 − g)εa(ω)εb(ω)
4(1 − g)

, (3.64)

where
c(ω) = (g − fa)εa(ω) + (g − fb)εb(ω). (3.65)

In (3.64), only the positive branch is physically reasonable. This can be justi-
fied by inserting g = 1/3, fa = fb = 0.5, and εa = εb = 1. Then the effective
dielectric function has to take the value of vacuum, which is possible only by
allowing a positive sign for the square root.

The spectroscopic properties of liquids are usually measured by a reflec-
tometer [63], which is based on the use of a prism as a probe. The information
about the liquid is obtained from a thin layer at the prism–liquid interface
in the region of an evanescent wave. For example, the islands of oil drops on
the surface of water can be treated as a Bruggeman effective medium. Never-
theless, reflectometric study yields information only from a thin layer at the
probe–sample interface. In the measurement of the effective reflectivity of a
random nanostructure, the effective dielectric function at the probe–sample
interface may differentiate from the sample average, which leads to an erro-
neous result. Therefore, Gehr et al. [64] suggested a measurement over the
total volume based on the use of an interferometer and found good agreement
between predicted values and measured data.

Layered Nanostructures

In Fig. 3.2c, we present a two-phase layered nanostructure, built by alternat-
ing layers of subwavelength thicknesses. Layered nanostructures are assumed
to have a wide range of optoelectronic applications from all-optical switching,
modulating, and computing devices to quantum well lasers.

For TE-polarized light (the electric field is parallel to the layers), the tan-
gential component of the electric field ETE is continuous at the boundary
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between the layers. The electric field is spatially distributed uniformly be-
tween the constituents a and b with volume fractions fa and fb. The average
electric displacement inside the nanostructure can be expressed as follows:

DTE(ω) = faD
(a)
TE(ω) + fbD

(b)
TE(ω) = [faεa(ω) + fbεb(ω)]ETE(ω), (3.66)

since ETE is continuous over the structure. On the other hand, the aver-
age electric displacement is related to the effective dielectric function by the
following relation:

DTE(ω) = εeff(ω)ETE(ω). (3.67)

By combining (3.66) and (3.67), it is possible to obtain the expression for the
effective dielectric function for TE-polarized light:

εeff(ω) = faεa(ω) + fbεb(ω). (3.68)

For TM-polarized light (the electric field is perpendicular to the layers), the
normal component of the electric displacement DTM is continuous at the
boundary. The average electric field is

ETM(ω) = faE
(a)
TM(ω) + fbE

(b)
TM(ω) =

[
fa

εa(ω)
+

fb

εb(ω)

]
DTM(ω), (3.69)

where DTM is continuous. It should be noted that the electric field is dis-
tributed nonuniformly between the constituents. The effective dielectric func-
tion for TM-polarized light is given by

1
εeff(ω)

=
fa

εa(ω)
+

fb

εb(ω)
. (3.70)

Finally, it is worth mentioning that linear optical properties are independent
of the thicknesses of individual layers. Hence, only the volume fraction of
different constituents matters. We emphasize that the linear optical response
of a layered nanostructure is anisotropic, thus yielding a form of birefringence:
the refractive index of the medium is different for TE- and TM-polarized light.

Asymptotic Behavior of Linear Susceptibility for Nanostructures

We have shown in (3.56) that the asymptotic behavior of the effective linear
susceptibility relative to each material constituting the nanostructure can be
expressed as follows:

χ
(1)
eff,i(ω) = −ω2

pi

4π

1
ω2 + o(ω−2), (3.71)

where the index i defines the material we are referring to, host and inclusion in
the MG and Bruggemann cases, and layer 1 and layer 2 in the layered nanos-
tructure case, and ωpi is the corresponding plasma frequency. Considering
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for both phases as well as for the effective medium, the usual correspondence
between the dielectric function and the susceptibility presented in (3.6), the
asymptotic behavior of the effective susceptibilities of the systems considered
can be found by direct substitution of the asymptotic behavior (3.71) in the
expressions obtained for the effective dielectric functions. We find that in all
cases analyzed – MG, Bruggemann, and layered nanostructures with TE- and
TM-polarized light – the asymptotic falloff of the effective susceptibility is

χ
(1)
eff (ω) = − [faω

2
pa + fbω2

pb]
4π

1
ω−2 + o(ω−2). (3.72)

We emphasize that asymptotic behavior (3.72) is the volume average of the
asymptotic behaviors of the two materials, regardless of the topology of the
system.



4 Kramers-Kronig Relations and Sum Rules
in Linear Optics

4.1 Introductory Remarks

Building upon the physical framework developed in the previous chapters,
we derive in all generality the Kramers-Kronig relations and the related sum
rules for linear optical functions. The dispersion relations and the sum rules
are then generalized also for the analysis of the linear optical properties of
the most typical nanostructures. A very complete theoretical treatment of
these issues can be found in [34].

In linear optical spectroscopy, K-K analysis has two typical functions de-
pending on whether the measurement is based on the transmission or reflec-
tion of light. In the former case, usually the imaginary part is measured and
the real part is obtained by a K-K relation, while in the latter case, the inten-
sity is measured and the phase is calculated by the appropriate K-K relation.
However, when using an ellipsometer, it is possible to obtain experimental
information from the complex function obtained by the measurement. In such
a case, K-K relations can be used to test the self-consistency of the measured
real and imaginary parts of the data.

We emphasize that linear optical spectroscopy is probably the most thor-
oughly exploited tool in optical materials research. For instance, spectropho-
tometers that utilize the Beer-Lambert law of light absorption have been
commercially available for a long time.

4.2 The Principle of Causality

Causality is one of the fundamental principles in physics. It states that the
effect cannot precede the cause. Nussenzveig [2] presents an interesting dis-
cussion about different definitions of causality. For optical purposes, the most
useful concept is relativistic causality, which states that no signal can propa-
gate faster than the speed of light in vacuum. The connection between causal-
ity and a scattering matrix (S-matrix) was studied widely in the 1950s [65–67].
With the aid of the S-matrix, it is possible to transform a system from the
initial state to the final state. Causality indicates that no scattered wave can
exist before the incident wave has reached the scattering center, whose size
is assumed to be finite. Causality implies that the general S-matrix has an
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analytic (also referred to as holomorphic) continuation in the upper complex
energy plane and complex poles (= singular points) are located in the lower
half of the complex energy plane. In optical physics, with the aid of analytic
continuation of the refractive index to the upper half of a complex angular
frequency plane, Kramers [4] proved that the principle of relativistic causal-
ity allows the calculation of the real refractive index of a medium from the
absorption spectrum. Kronig [5] showed that the existence of a dispersion
relation is a sufficient and a necessary condition for strict causality to hold.
However, he made assumptions on the holomorphic behavior of the investi-
gated function. A rigorous statement of equivalence between causality and
the existence of dispersion relations, and so of the existence of a strict con-
nection between the mathematical properties of the functions describing the
physics in the domains of time and frequency, is provided by the Titchmarsch
theorem [2].

4.3 Titchmarsch’s Theorem
and Kramers-Kronig Relations

Titchmarsch’s theorem connects, within fairly loose hypotheses, the causality
of a function a(t) to the analytical properties of its Fourier transform a(ω) =
F [a(t)]

Theorem 1. (Titchmarsch)

The three statements 1, 2, and 3 are mathematically equivalent:

1. a(t) = 0 if t ≤ 0 and a(t) ∈ L2.
2. a(ω) = F [a (t)] ∈ L2 if ω ∈ R and if

a(ω) = lim
ω′→0

a(ω + iω′),

then a(ω + iω′) is holomorphic if ω′ > 0.
3. Hilbert transforms [39] connect the real and imaginary parts of a(ω) as

follows:

Re{a(ω)} =
1
π

P

∞∫
−∞

Im{a(ω′)}
ω′ − ω

dω′,

Im{a(ω)} = − 1
π

P

∞∫
−∞

Re{a(ω′)}
ω′ − ω

dω′.

Thus, the causality of a (t), together with its property of being a function
belonging to the space of the square-integrable functions L2, implies that its
Fourier transform a (ω) is analytic in the upper complex ω-plane and that
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the real and imaginary parts of a (ω) are not independent but are connected
by nonlocal, integral relations termed dispersion relations.

Under the reasonable assumption that all tensorial components of the lin-
ear Green function belong to the L2 space, we deduce that Hilbert transforms
connect the real and imaginary parts of the tensorial components of linear
susceptibility. Considering that the components of polarization P (1)(t) are
real functions, we can deduce that

χ
(1)
ij (−ω) =

[
χ

(1)
ij (ω)

]∗
, (4.1)

where (∗) denotes the complex conjugate. Equation (4.1) implies that for
every ω ∈ R, the following relations hold:

Re
{

χ
(1)
ij (ω)

}
= Re

{
χ

(1)
ij (−ω)

}
, (4.2)

Im
{

χ
(1)
ij (ω)

}
= −Im

{
χ

(1)
ij (−ω)

}
. (4.3)

Taking advantage of these expressions, we can finally write the K-K relations
[4, 5]

Re
{

χ
(1)
ij (ω)

}
=

2
π

P

∞∫
0

ω′Im
{

χ
(1)
ij (ω′)

}
ω′2 − ω2

dω′, (4.4)

Im
{

χ
(1)
ij (ω)

}
= −2ω

π
P

∞∫
0

Re
{

χ
(1)
ij (ω′)

}
ω′2 − ω2

dω′. (4.5)

We note that the static susceptibility can be obtained from (4.4) simply by
setting ω = 0.

The relevance of K-K relations in physics goes beyond the purely con-
ceptual sphere. The real and imaginary parts of susceptibility are related
to qualitatively different phenomena, light dispersion and light absorption,
respectively, whose measurement requires different experimental setups and
instruments. We underline that since every function that models the linear
susceptibility of a material, as well as any set of experimental data of the real
and imaginary parts of linear susceptibility, must respect the K-K relations,
these also constitute a fundamental test of self-consistency [10,12–15,38].

4.3.1 Kramers-Kronig Relations for Conductors

In the special case of conductors, the dispersion relations have to be modified
[68–70] because of the presence of a pole in the linear susceptibility for ω =
0, and so the first part of statement 2 in the Titchmarsch theorem is not
satisfied [12].

It is possible in general to express susceptibility as a function of linear
conductivity [35,38]:
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χ
(1)
ij (ω) = i

σ
(1)
ij (ω)
ω

= i
Re

{
σ

(1)
ij (ω)

}
ω

−
Im

{
σ

(1)
ij (ω)

}
ω

, (4.6)

where the linear conductivity tensor describes the physically indistinguishable
effects of polarization and current. The conductors, by definition, have a
nonvanishing real conductivity for static electric fields. In consequence, the
imaginary part of the linear susceptibility has a pole for ω = 0, i.e. the
following relation holds for low values of ω:

Im
{

χ
(1)
ij (ω)

}
≈ σ

(1)
ij (0)
ω

. (4.7)

As a consequence, when computing the Hilbert transform of linear suscep-
tibility, there is a boundary contribution from the pole at the origin. This
determines a change in the integration path in the complex ω-plane from the
usual case [15], so that the K-K relation for conductors can be written as

Re
{

χ
(1)
ij (ω)

}
=

2
π

P

∞∫
0

ω′Im
{

χ
(1)
ij (ω′)

}
ω′2 − ω2

dω′, (4.8)

Im
{

χ
(1)
ij (ω)

}
− σ

(1)
ij (0)
ω

= −2ω

π
P

∞∫
0

Re
{

χ
(1)
ij (ω′)

}
ω′2 − ω2

dω′. (4.9)

We observe that if the static conductance is vanishing, these modified K-K
relations coincide with the usual dispersion relations presented in (4.4) and
(4.5).

4.3.2 Kramers-Kronig Relations for the Effective Susceptibility
of Nanostructures

The linear optical properties of nanostructures can be described with the
effective dielectric function of the structure. Expressions for the effective di-
electric function of different models, including MG, Bruggeman, and layered
nanostructures, have been presented in the previous chapter.

Since the consideration of the local field effects provides contributions
to the Hamiltonian of the system but does not alter the causal nature
of the Green function of the system, χ

(1)
eff (ω) is holomorphic in the up-

per complex ω-plane. Moreover, it has been proved by direct calculation
that the effective dielectric function χ

(1)
eff (ω) fulfills the symmetry property

χ
(1)
eff (−ω) =

[
χ

(1)
eff (−ω)

]∗
in the cases of MG [62], Bruggeman [71], and lay-

ered [72] nanostructures. These properties and the asymptotic equivalence
between χ(1)(ω) and χ

(1)
eff (ω) shown in (3.72) imply that the latter function

obeys the same K-K relations as the former function:
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Re{χ
(1)
eff (ω)} =

2
π

P

∞∫
0

ω′Im{χ
(1)
eff (ω′)}

ω′2 − ω2 dω′, (4.10)

Im{χ
(1)
eff (ω)} = −2ω

π
P

∞∫
0

Re{χ
(1)
eff (ω′)}

ω′2 − ω2 dω′. (4.11)

Therefore, the results obtained in this chapter are still valid in the more
general and realistic context where local field effects are considered.

Following the work by Stroud [73], we can define the average linear sus-
ceptibility function of a nanostructure by the form

χ(1)
av (ω) = faχ

(1)
a (ω) + fbχ(1)

a (ω). (4.12)

It is easy to find that the dominant term in the asymptotic behavior of
the function χ

(1)
av (ω) is the same as for the function χ

(1)
eff (ω). Considering

the parity properties of the real part of the susceptibility functions, we can
then derive the asymptotic falloff of the difference between the average and
effective susceptibility:

χ
(1)
eff (ω) − χ(1)

av (ω) ∼ ψ

ω4 + O(ω−4), (4.13)

where ψ is a constant. The functions χ
(1)
eff (ω) − χ

(1)
av (ω) and ω2α[χ(1)

eff (ω) −
χ

(1)
av (ω)] are holomorphic in the upper complex plane of the variable ω and

have an asymptotic decrease strictly faster than ω−1, therefore the following
independent K-K relations connect the real and imaginary parts:

ω2αRe{χ
(1)
eff (ω) − χ(1)

av (ω)} =
2
π

P

∞∫
0

ω′2α+1Im{χ
(1)
eff (ω′) − χ

(1)
av (ω′)}

ω′2 − ω2 dω′,

(4.14)

ω2α−1Im{χ
(1)
eff (ω) − χ(1)

av (ω)} = − 2
π

P

∞∫
0

ω′2αRe{χ
(1)
eff (ω′) − χ

(1)
av (ω′)}

ω′2 − ω2 dω′,

(4.15)
with α = 0, 1. We note that when we consider suitable functions with a
faster asymptotic decrease, it is generally possible to derive a larger set of
independent K-K relations.

4.4 Superconvergence Theorem and Sum Rules

From the K-K relations and knowledge of the asymptotic behavior of the
susceptibility function, it is possible to deduce the value of the zero-degree
moment of the real part and the value of the first moment of the imaginary
part of the susceptibility. This result can be obtained by taking advantage of
the superconvergence theorem [9,74]
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Theorem 2. (superconvergence)

If

g (y) = P

∞∫
0

f (x)
y2 − x2 dx,

where

1. f (x) is continuously differentiable,
2. f (x) = O

[
(x lnx)−1

]
,

then for y  x, the following asymptotic expansion holds:

g (y) =
1
y2

∞∫
0

f (x) dx + O
(
y−2) .

The theorem can also be written in the form
∞∫
0

f (x) dx = lim
y→∞

[
y2g (y)

]
. (4.16)

We then consider the K-K relation (4.4), we replace x = ω′, y = ω, and we set
f(x) and g(y) equal to the general tensorial component of the imaginary and
real parts of the linear susceptibility, respectively. The discussion presented in
this chapter shows that the asymptotic decrease for all tensorial components
of the imaginary part is strictly faster than ω−2. Therefore, by applying the
superconvergence theorem [9,74] to the K-K relation (4.4), we conclude that

∞∫
0

ω′Im
{

χ
(1)
ij (ω′)

}
dω′ = lim

ω→∞

(
−π

2
ω2Re

{
χ

(1)
ij (ω)

})
=

ω2
p

8
δij , (4.17)

where we have considered the general result for the asymptotic behavior of
the real part of the susceptibility presented in (3.44). This law is commonly
referred to as Thomas-Reiche-Kuhn (TRK) or f sum rule [6–8]. Considering
that the quantity under integral is proportional to the absorption of the
material under examination, we may see that the total absorption over all
the spectrum is proportional to the total electronic density. It is possible to
obtain the following sum rule by applying the superconvergence theorem to
the second dispersion relation (4.5):

∞∫
0

Re
{

χ
(1)
ij (ω′)

}
dω′ = lim

ω→∞

(π

2
ωIm

{
χ

(1)
ij (ω)

})
= 0. (4.18)

This sum rule implies that the average value of the real part of the dielectric
function over all the spectrum is 1.
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Sum rules have long constituted fundamental tools in the investigation of
light–matter interaction phenomena in condensed matter, gases, molecules,
and liquids. They provide constraints for checking the self-consistency of ex-
perimental or model-generated data [10,12–15,38].

4.5 Sum Rules for Conductors

Applying the superconvergence theorem in the usual way to the K-K relations
for the conductors presented in (4.8) and (4.9), we find that while the TRK
sum rule is still obeyed, the boundary term contained in the second K-K
relation changes the sum rule for the real part of the susceptibility:

∞∫
0

Re
{

χ
(1)
ij (ω′)

}
dω′ = lim

ω→∞

[
π

2
ω

(
Im

{
χ

(1)
ij (ω)

}
− σ

(1)
ij (0)
ω

)]

= −π

2
σ

(1)
ij (0)

(4.19)

Therefore, in the case of conductors, the average value of the dielectric func-
tion is not equal to 1 [68].

We point out that the verification of linear sum rules from experimental
data is usually hard to obtain because of the critical contributions made
by the out-of-range asymptotic part of the real or imaginary parts of the
susceptibility under examination [12, 75, 76]. However, in the case of linear
optics, information about the response of the material to very high frequency
radiation can be obtained using synchrotron radiation [12].

In particular, we wish to emphasize that the integral properties obtained
for the linear susceptibility that we have derived by adopting a quantum
mechanical description of the matter have a one-to-one correspondence with
those that can be obtained by suitably modeling the matter with a simple
classical mechanical picture. In such a picture, each electron is independent,
is bound within a given volume by a harmonic potential, oscillates under
the influence of the external oscillating electric field, and is slowed down by
linear friction. In the special case of conductors, the potential is assumed
to be vanishing. The traditionally termed Drude-Lorentz oscillator model
[12, 14, 15, 17, 35, 38, 77] shows that the integral properties we have analyzed
in this chapter are fundamental properties of a wide class of systems that
transcend how the system is modeled, since they descend from assuming
causality in the interaction processes.

4.5.1 Sum Rules for the Linear Effective Susceptibilities
of Nanostructures

We have previously presented K-K relations (4.10) and (4.11) for the effective
susceptibility of nanostructures for all the investigated topologies. Therefore,
by applying the superconvergence theorem to a pair of K-K relations and
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taking into account the general asymptotic behavior presented in (3.72), it is
possible to derive sum rules for the real and imaginary parts of the effective
susceptibility. The corresponding TRK sum rule for the effective susceptibility
is of the form

∞∫
0

ω′Im{χ
(1)
eff (ω′)}dω′ =

1
8
[
fiω

2
pi + (1 − fi)ω2

ph
]
. (4.20)

It is worth noting that the high-frequency behavior of the composite trans-
forms the TRK sum rule according to the volume fractions and plasma fre-
quencies of the constituents, while the average sum rule is valid for all topolo-
gies:

∞∫
0

Re{χ
(1)
eff (ω′)}dω′ = 0, (4.21)

which is totally analogous to that presented in (4.18).
Moreover, if we consider the set of K-K relations for the real and imag-

inary parts of the function χ
(1)
eff (ω) − χ

(1)
av (ω) presented in (4.14) and (4.15),

by applying the superconvergence theorem to the equations, we obtain the
following sum rules:

∞∫
0

ω2αRe{χ
(1)
eff (ω′) − χ(1)

av (ω′)}dω′ = 0, α = 0, 1 (4.22)

∞∫
0

ω2α+1Im{χ
(1)
eff (ω′) − χ(1)

av (ω′)}dω′ =

{
0 , α = 0
−π

2 ψ , α = 1
. (4.23)

The sum rule (4.23) for α = 1 was first given by Stroud [73] in the case of an
MG composite, for which

ψ = −1
3
fafb[ω2

pb − ω2
pa]

2. (4.24)

4.6 Integral Properties of Optical Constants

The linear susceptibility function describes, at a fundamental level, the con-
nection between the microscopic dynamics of the system under consideration
and its linear optical properties. Nevertheless, it is experimentally much eas-
ier to measure other quantities that are more directly related to the behavior
of light influenced by its interaction with matter. The most commonly used
optical constants are the complex index of refraction N(ω) = η(ω) + iκ(ω)
and the complex reflectivity at normal incidence r(ω). It has been been shown
that relevant integral relations can also be established for these quantities.
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Hence, the K-K relations and sum rules find wider experimental application
in the analysis of the data for these optical constants. In this section, we con-
sider the simplifying assumption of isotropic matter, and we briefly present
the integral properties of the complex index of refraction N(ω). We show that
that they are analogous to those presented for linear susceptibility. We will
not treat the experimentally relevant case of reflectivity at normal incidence
r(ω) since it requires a slightly more complex and cumbersome mathemati-
cal treatment; a very detailed treatment of integral relations for r(ω) can be
found in [15].

4.6.1 Integral Properties of the Index of Refraction

We observe that the complex index of refraction N(ω) presented in (3.16) is
the square root of a function that is is holomorphic in the upper complex ω-
plane. Following the procedure proposed in [2], it is possible to determine that
N(ω) itself is holomorphic, has no branching points in the upper complex ω-
plane, and that the usual crossing relation N(ω) = [N(−ω)]∗ holds. Moreover,
it is simple to prove that the function N(ω) − 1 decreases asymptotically as:

N(ω) − 1 ∼ − ω2
p

2ω2 . (4.25)

We conclude that we can write the following K-K relations connecting the
real and imaginary parts of the refractive index:

η(ω) − 1 =
2
π

P

∞∫
0

ω′κ(ω′)
ω′2 − ω2 dω′, (4.26)

κ(ω) = −2ω

π
P

∞∫
0

η(ω′) − 1
ω′2 − ω2 dω′. (4.27)

We wish to emphasize that this is the original formulation of K-K relations
proposed by Kramers [4]. Moreover, it should be noted that these dispersion
relations (4.26) are valid both in the case of conductors and nonconductors;
we refer to [78] for a thorough discussion of this issue. The usual protocol in
linear optical spectroscopy is the measurement of light transmission through
a solid or liquid sample. Since the thickness d of the sample is known and
the (dual beam) spectrophotometer provides the wavelength-dependent op-
tical density, the absorption coefficient can be resolved by the Beer-Lambert
intensity law, I = I0 exp(−α(ω)d). There is a simple relation between the ex-
tinction coefficient κ(ω) and the absorption coefficient α(ω) of the medium,
i.e. κ(ω) = cα(ω)/2ω, which implies that it is possible to exploit (4.26) to find
the refractive index change. As an example of such data inversion, we show in
Fig. 4.1 the extinction curves and corresponding refractive index changes of a
KBr crystal containing F and M color centers. The curves were obtained by
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Fig. 4.1. (a) Extinction curves and (b) refractive index changes of F and M color
centers in a KBr crystal at different temperatures. Note in (b) that for certain
temperatures there are three angular frequency values for which ∆ηF,M = 0. The
curves are 1–250K, 2–170K, 3–100K, and 4–35K. Reproduced from [80]

measuring light transmission as a function of wavelength and temperature.
In Figs. 4.2–4.3, we show the result of other applications of K-K relations
to the experimental data of κ(ω). From the measurement of the absorbance
only, the authors have been able to deduce all the information needed to re-
construct the real and imaginary parts of the dielectric function [79]. If we
apply the superconvergence theorem to (4.26) and consider the asymptotic
behavior presented in (4.25), we obtain

∞∫
0

ω′κ (ω′) dω′ = lim
ω→∞

{
−π

2
ω2 [η (ω) − 1]

}
=

πω2
p

4
, (4.28)

which is equivalent to the TRK sum rule [6–8] presented in (4.17). Following
the same procedure for the second dispersion relation (4.27), we obtain the
Altarelli-Dexter-Nussenzveig-Smith (ADNS) sum rule [9]:
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Fig. 4.2. Real part of the dielectric function ε(ω) obtained from K-K analysis of
the absorbance of La1.87Sr0.13CuO4. Reproduced from [79]

Fig. 4.3. Imaginary part of the dielectric function ε(ω) obtained from K-K analysis
of the absorbance of La1.87Sr0.13CuO4. Reproduced from [79]

∞∫
0

[η (ω′) − 1]dω′ = lim
ω→∞

[π

2
ωκ (ω)

]
= 0. (4.29)

We underline that this sum rule is not wholly equivalent to the sum rule (4.18)
obtained for the imaginary part of the susceptibility. The reason is that if we
compute the sum rule for the imaginary part of the susceptibility function in
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Fig. 4.4. Computation of the sum rule (4.18) using optical data for molybde-
num. Note that, instead of Re{χ(1)(ω)}, the equivalent quantity 1 − Re{ε(ω)} =
−4πRe{χ(1)(ω)} is considered in the integration. Reproduced from [81]

Fig. 4.5. Computation of the ADNS sum rule (4.29) using optical data for molyb-
denum. Note that a factor � appears in this figure. Reproduced from [81]

the case of conductors, we can obtain a measure of the static conductance as
expressed in (4.19); the result (4.29) is valid in both cases of conducting and
nonconducting matter. We propose that the reason why the consideration of
susceptibility permits us to discern between conductors and nonconductors
is that susceptibility is a more fundamental physical quantity, since it is
directly related to the dynamics of the system. In Figs. 4.4 and 4.5, we show
the results obtained for the integration of the sum rule for the real part of
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the susceptibility presented in expression (4.18) and the sum rule for [η(ω)−
1] presented in (4.29) for optical data for molybdenum [81], respectively.
While in the former case, the integral converges asymptotically to a positive
quantity, which corresponds to the actual conductivity as predicted by (4.18),
in the latter case, the integral converges to zero, as predicted by the ADNS
sum rule (4.29).

We remark that in practical data analysis, the usual problem related to the
utilization of K-K relations, of alternative methods based on Fourier trans-
forms [82], and of sum rules is the requirement of extrapolating data beyond
the measured spectral range in order to achieve a wider domain of integra-
tion. Nowadays, different software packages are available for spectroscopic
devices that make use of K-K analysis. However, it has been shown that the
utilization of such software may lead to qualitatively different results when
using identical input data [83]. Such problems can be eased by using more
advanced inversion methods, such as multiply subtractive Kramers-Kronig
relations and the maximum entropy methods, which will be introduced later
in the book. Finally, we wish to remark that K-K relations and sum rules
are valid even in the frame of negative refractive index media [84, 85]. Such
media have drawn much interest recently [86,87].

4.6.2 Kramers-Kronig Relations
in Linear Reflectance Spectroscopy

The estimation of the optical constants of a sample is commonly obtained by
measuring the reflectance at normal incidence and using dispersion relations
in the phase retrieval procedure. Measurement of normal reflectance is espe-
cially well suited for the determination of optical constants in regions of high
absorbance [88]. The first significant experimental applications of normal re-
flectivity measurements for the determination of the optical constants of semi-
conductors were carried out in 1962 by Ehrenreich and Philipp [89,90]. Since
then, the method has become a standard spectroscopic technique [10, 91].
At normal incidence, the complex reflectivity r(ω) of light at the boundary
between sample and vacuum is related to the complex refractive index of the
sample, according to Fresnel’s equations (3.24) and (3.28):

r(ω) =
N(ω) − 1
N(ω) + 1

=
η(ω) − 1 + iκ(ω)
η(ω) + 1 + iκ(ω)

. (4.30)

There is an analytic continuation of function r(ω) from the real axis into
the upper half of the complex angular frequency ω-plane [88]. In the case of
a dielectric, the real axis belongs to the domain of holomorphicity, while in
the case of conductors, there is a branch point at ω = 0. The effect of the
branch point on a dispersion relation for a phase spectrum has been discussed
by Nash et al. [92] and Lee and Sindoni [93]. It is possible to establish a
symmetry relation for complex reflectivity with linearly polarized light:
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r(−ω∗) = [r(ω)]∗. (4.31)

For circularly and elliptically polarized light, the reflectivity has a lower sym-
metry after the mixing of left- and right-hand modes [94]. The quantity ob-
tained from the reflectance measurement is usually the amplitude of the re-
flected beam, which is the square of the modulus of the complex reflectivity:

R(ω) = |r(ω)|2 = r(ω)[r(ω)]∗. (4.32)

Complex reflectivity can be expressed in polar coordinates as r(ω) =
|r(ω)| exp [iθ(ω)], so that we obtain

ln r(ω) = ln |r(ω)| + iθ(ω). (4.33)

Unfortunately, the function diverges logarithmically at the limit |ω| → ∞
and is not square-integrable [95]. Divergence of the integrals eliminates the
possibility of deriving analogous dispersion relations for complex reflectivity
as for optical constants [96]. Another important requirement for complex
reflectivity is the lack of zeros [88], which are branch points of a logarithm.
However, there are several possibilities for avoiding the divergence of the
integral. On one hand, the function [97]

F (ω) =
ln r(ω)

ω2 − ω′2 (4.34)

gives the well-known relation for the phase of complex reflectivity, as follows:

θ(ω) = −2ω

π
P

∞∫
0

ln |r(ω′)|
ω′2 − ω2 dω′. (4.35)

On the other hand, the function [97]

G(ω) = ln r(ω)
[

1
ω − ω2

− 1
ω − ω2

]
(4.36)

gives the dispersion relation for the amplitude of complex reflectivity

ln |r(ω1)| − ln |r(ω2)| =
2
π

P

∞∫
0

ω′θ(ω′)
[

1
ω′2 − ω2

1
− 1

ω′2 − ω2
2

]
dω′. (4.37)

Although the expression (4.37) seems to be nothing but a subtracted K-
K relation, it is not. Both functions ln |r(ω1)| and ln |r(ω2)| are separately
divergent and only their difference is convergent [97].

It should be pointed out that in the typical case of experimental data
with the squared modulus of amplitude reflectivity, i.e. reflectance, the con-
ventional phase retrieval by K-K relation (4.35) may not determine the phase
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completely. This may happen, for instance, when recording reflection spectra
through a transparent window [98], and also in the case of oblique TM-
polarized incident light, provided that the system fulfils some constraints
related to the dielectric function of the absorbing medium. Here we analyze
the case of oblique incidence. In order to clarify the differences in phase re-
trieval from the logarithm of reflectance related to TM- and TE-polarized
light, we next employ expressions (3.21), (3.24), and (3.28), and for the sake
of simplicity, we assume that light is incident from air to the light absorbing
medium. Then we can write the following expressions:

RTE =

∣∣∣∣∣cos ϕi −
√

N2 − sin2 ϕi

cos ϕi +
√

N2 − sin2 ϕi

∣∣∣∣∣
2

, (4.38)

RTM =

∣∣∣∣∣N2 cos ϕi −
√

N2 − sin2 ϕi

N2 cos ϕi +
√

N2 − sin2 ϕi

∣∣∣∣∣
2

. (4.39)

The idea is to study the complex zeros of reflectance in the upper half plane.
From (4.38), we observe that if we set RTE = 0, this equation holds only
if N = 1, and this same condition is also true for the case of the normal
incidence. Thus, taking the natural logarithm, i.e. lnRTE, is not a problem
and the normal procedure of phase retrieval by (4.35) for both normal light
incidence (polarization of the light is immaterial) and for oblique incidence,
TE-polarized light is valid. On the contrary, the condition RTM = 0, which
in the case of a nonabsorbing medium is achieved at Brewster angle ϕi such
that tanϕi = η, and is achieved also for a purely imaginary frequency. The
reason is that the dielectric function ε(ω) of the medium is a monotonically
decreasing real function of the frequency [38]. This means that N2 = ε ∈
R. Now allowing a purely real refractive index, which is taken along the
imaginary frequency axis, yield according to (4.39) that there are complex
zeros on the imaginary axis if

εstatic ≥ tan2 ϕi ≥ ε∞, (4.40)

where the upper limit is the static value of the dielectric function. Under
condition (4.40), complex zeros of the reflectance of TM-polarized light yield
singularities of the logarithm of reflectance. Such singular points represent
branch points of the logarithmic function. Nevertheless, the phase in such a
case can be obtained using the Blaschke product as devised by Toll [1,99]. If
ωj denotes complex zeros with j = 1, . . . , J , then the Blaschke product is

B(ω) =
J∏

j=1

ω − ωj

ω − ω∗
j

. (4.41)

True reflectivity is obtained by multiplying the complex reflectivity, obtained
by conventional K-K phase retrieval procedure, by the Blaschke product, as
follows:
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rtrue(ω) = rKK(ω)
J∏

j=1

ω − ωj

ω − ω∗
j

. (4.42)

Grosse and Offermann [100] have studied such a phase correction in the
context of TM-polarized light incident on bulk and layered media and pro-
vided a method for phase reconstruction from experimental data. In their
method, they estimate the complex zeros. Phase retrieval from the reflectance
of isotropic and anisotropic media, based on utilization of the K-K relation
related to the logarithm of reflectivity, and corresponding phase corrections
were studied by Yamamoto and Ishida [101,102]. We remark already here that
if maximum entropy method techniques (discussed in Chap. 10) are applied,
it is possible to work with the reflectivity function instead of considering its
logarithm. This means that many mathematical complications related to the
functional behavior of the logarithmic function can be avoided.

Reflection spectroscopy has for a long time constituted a basic method
along with K-K relations for resolving a complex refractive index from re-
flectance. Note that in the case of a phase retrieval procedure based on re-
lations (4.35) and (4.30), it is possible to obtain the absolute value of the
refractive index. The reflection measurement mode is especially reasonable
when studying opaque media and liquids. Naturally ellipsometry provides in-
formation on the complex refractive index. However, due to the limitations of
the broadness of the wavelength ranges that ellipsometers provide, the simple
reflectometer may be more useful. One reason is the broad spectral range that
is available with a reflectometer, which is also not a sophisticated device if
compared to an ellipsometer. In Fig. 4.6 we show the results of phase retrieval
obtained using (4.35) of orthorhombic sulfur measured with light polarized
parallel and perpendicular, respectively, to the projection of the c-axis of the
(111) plane.

The unavoidable problem of having measured data in a limited spectral
range hinders the efficacy of the data inversion procedure performed with
K-K relations. Extrapolations beyond the measured range may sometimes be
hazardous. In order to overcome this problem, Modine et al. [104] presented a
method of coupling reflectometric and ellipsometric data in order to improve
the success of the K-K analysis. Their analysis is based on the truncated K-K
relation

θKK(ω) = −ω

π
P
∫ ωm

0

lnR(ω′)
ω′2 − ω2 dω′, (4.43)

where ωm is the upper limit of the reflectance data, and they assumed that
the reflectance data can be accurately extrapolated to zero frequency. The
remainder of the K-K relation for the unmeasured angular frequency region
was obtained by the use of a geometric series expansion as follows:

∆θ(ω) = −ω

π
P
∫ ∞

ωm

lnR(ω′)
ω′2 − ω2 dω′ =

∞∑
j=0

A2j+1ω
2j+1. (4.44)
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Wave number (cm−1)

Fig. 4.6. (a) Perpendicular κ⊥; (b) parallel extinction coefficient κ‖, and (c) the re-
fractive index η of orthorhombic sulfur retrieved from reflectance data. Reproduced
from [103]
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In (4.44), the real coefficient A2j+1 is

A2j+1 = − 1
π

P
∫ ∞

ωm

lnR(ω′)
ω′2 dω′. (4.45)

Although reflectance is unknown beyond the maximum angular frequency,
the phase may be partly known from ellipsometry data:

θ(ω) = arctan
2κ(ω)

η2(ω) + κ2(ω) − 1
. (4.46)

Then the coefficients of the series can de derived by using the the method
of least squares. Now (4.43) can be employed in data inversion. Modine et
al. [104] constructed, in this manner, the complex refractive index of tantalum
carbide from the infrared to the near UV region.

Hulthén [105] developed a method, where the K-K relations are general-
ized for finite frequency intervals, provided that the imaginary and real parts
of a function are known for at least partly overlapping frequency intervals.
Milton et al. [106] also considered finite frequency K-K relations. They gave
inequalities to check the self-consistency of experimental data, which, how-
ever, requires information for a function at anchor points. An alternative,
powerful method, which is based on subtractive K-K relations and which
has been adopted in optical spectroscopy for experimental data inversion, is
presented in Sect. 4.7.2.

4.7 Generalization of Integral Properties
for More Effective Data Analysis

A serious practical problem in applying K-K relations effectively is that they
require information over the whole spectrum, while experimentally the data
range is unavoidably finite. One of the possible strategies for easing this prob-
lem is to improve the approximate truncated integration by extending the
integration to infinity by an a priori choice of the behavior of susceptibility
outside the data range. Nevertheless, the choice of the asymptotic behavior
cannot be totally arbitrary. Peiponen and Vartiainen [107] used a Gaussian
line shape for the extinction coefficient in data extrapolation. They observed
that calculated values of the real refractive index obtained from K-K anal-
ysis were erroneous. The errors were caused by the failure of the symmetry
property of the Gaussian line shape, which is not an odd function.

In the next subsections, we present a more detailed description of two
promising approaches that, by exploiting some refinements of conventional
K-K relations, provide more efficient and practical tools for data analysis.
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4.7.1 Generalized Kramers-Kronig Relations

In order to overcome the problem of the relatively low convergence of K-K
relations, Altarelli and Smith [78] introduced generalized K-K relations by
considering the functions [N(ω) − 1]m and ωm[N(ω) − 1]m. All the functions
belonging to both classes have the same holomorphic properties of N(ω),
are square-integrable functions, and for a given m, the convergence is pro-
portional to ω−2m and ω−m, respectively. The symmetry properties of the
functions ωm[N(ω) − 1]m depend on the parity of the power ωm. For odd
numbers m, the generalized K-K relations can be written as follows:

ωmRe{[N(ω) − 1]m} =
2ω

π
P

∞∫
0

ω′mIm{[N(ω′) − 1]m}
ω′2 − ω2 dω′, (4.47)

ωmIm{[N(ω) − 1]m} = − 2
π

P

∞∫
0

ω′m+1Re{[N(ω′) − 1]m}
ω′2 − ω2 dω′. (4.48)

For even numbers m, the generalized K-K relations are of the form

ωmRe{[N(ω) − 1]m} =
2
π

P

∞∫
0

ω′m+1Im{[N(ω′) − 1]m}
ω′2 − ω2 dω′, (4.49)

ωmIm{[N(ω) − 1]m} = −2ω

π
P

∞∫
0

ω′mRe{[N(ω′) − 1]m}
ω′2 − ω2 dω′. (4.50)

For values m > 2, the convergence of generalized K-K relations is strictly
faster than that of conventional K-K relations, which is of crucial importance
in experimental data analysis.

If we apply the superconvergence theorem to (4.47)–(4.50) and consider
the asymptotic behavior (4.25) of N(ω) − 1, we derive a more general set of
sum rules [78]:

∞∫
0

ω′Im{[N(ω′) − 1]m}dω′ =

{
π
4 ω2

p m = 1
0 m > 0

, (4.51)

∞∫
0

ω′m−1Re{[N(ω′) − 1]m}dω′ = 0 m = 1, 3, 5, · · · , (4.52)

∞∫
0

ω′mIm{[N(ω′) − 1]m}dω′ =

{
π
4 ω2

p m = 1
0 m = 3, 5, 7, · · · , (4.53)
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∞∫
0

ω′m−2Im{[N(ω′) − 1]m}dω′ = 0 m = 3, 5, 7, · · · , (4.54)

∞∫
0

ω′mRe{[N(ω′) − 1]m}dω′ = 0 m = 2, 4, 6, · · · , (4.55)

∞∫
0

ω′m−2Re{[N(ω′) − 1]m}dω′ = 0 m = 4, 6, 8, · · · , (4.56)

∞∫
0

ω′m−1Im{[N(ω′) − 1]m}dω′ = 0 (4.57)

∞∫
0

ω′m+1Im{[N(ω′) − 1]m}dω′ =

{
−π

8 ω4
p m = 2

0 m = 4, 6, 8, · · · , (4.58)

Similar results could also be obtained for higher powers of linear suscepti-
bility. Peiponen and Asakura [72] presented the generalized K-K relations
and sum rules for layered nanostructures by considering both even and odd
powers of the function ωm[χ(1)

eff (ω)]m. Their results, nevertheless, apply to all
of the nanostructural composites considered here.

Along the lines of Altarelli and Smith [78], Smith and Manogue [95] con-
sidered the powers of complex reflectivity. They proved that functions [r(ω)]m

and ωm[r(ω)]m are square-integrable functions with proper asymptotic be-
havior which allow the derivation of mixed K-K relations. These K-K relations
mix both the amplitude and the phase of complex reflectivity. The real and
imaginary parts of the function [r(ω)]m result in the following:

|r(ω)|m cos[mθ(ω)] =
2
π

P

∞∫
0

ω|r(ω′)|m sin[mθ(ω′)]
ω′2 − ω2 dω′, (4.59)

|r(ω)|m sin[mθ(ω)] = −2ω

π
P

∞∫
0

|r(ω′)|m cos[mθ(ω′)]
ω′2 − ω2 dω′. (4.60)

In a similar manner, Smith and Manogue [95] derived generalized mixed
relations for even and odd powers of ωm[r(ω)]m, which are analogous to
(4.48)–(4.50). Mixed K-K relations can be used in measurements where both
the amplitude and the phase of the reflected beam are obtained. Moreover,
they can be used in the derivation of various sum rules that provide tools for
testing experimental data such as those found in ellipsometric studies.
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4.7.2 Subtractive K-K Relations

Bachrach and Brown [108] introduced singly subtractive K-K relations
(SSKK) in order to reduce the errors caused by the finite spectrum as they
calculated the real refractive index of a medium from a measured absorption
spectrum. They measured one reference point (or anchor point) indepen-
dently, which was used to improve the accuracy of K-K analysis. Conventional
K-K relation (4.26) can be written at the reference point, say, at frequency
ω1, in the form

η(ω1) − 1 =
2
π

P

∞∫
0

ω′κ(ω′)
ω′2 − ω2

1
dω′, (4.61)

where η(ω1) is known a priori. By subtracting (4.61) from (4.26), Bachrach
and Brown [108] obtained a singly subtractive K-K relation as follows:

η(ω) − η(ω1) =
2
π

P

∞∫
0

ω′κ(ω′)
ω′2 − ω2 dω′ − 2

π
P

∞∫
0

ω′κ(ω′)
ω′2 − ω2

1
dω′

=
2
π

⎡⎣P

∞∫
0

[ω′2 − ω2
1 ]ω′κ(ω′) − [ω2 − ω2]ω′κ(ω′)
(ω′2 − ω2)(ω′2 − ω2

1)
dω′

⎤⎦
=

2
π

P

∞∫
0

[ω2 − ω2
1 ]ω′κ(ω′)

(ω′2 − ω2)(ω′2 − ω2
1)

dω′

=
2(ω2 − ω2

1)
π

P

∞∫
0

ω′κ(ω′)
(ω′2 − ω2)(ω′2 − ω2

1)
dω′.

(4.62)

The subtractive form of a K-K integral converges more rapidly than a conven-
tional K-K relation. Singly subtractive K-K relations have been used in im-
proving the convergence of the phase of a measured reflectancespectrum [109].
Recently, Palmer et al. [110] described multiply subtractive K-K relations
(MSKK) in order to obtain the optical constants of a medium with a single
reflectance measurement with a finite frequency range. Multiply subtractive
K-K relations are derived in a manner similar to singly subtractive K-K rela-
tions. MSKK analysis requires several reference points in the phase retrieval
procedure. For reflection spectroscopy, the reference points are the discrete
values of the complex refractive index, which are obtained from independent
measurement and belong to the measured frequency range. A doubly sub-
tractive K-K relation is derived with the aid of (4.62), by replacing the first
reference point ω1 with the second reference point ω2, which becomes

η(ω) − η(ω2) =
2(ω2 − ω2

2)
π

P

∞∫
0

ω′κ(ω′)
(ω′2 − ω2)(ω′2 − ω2

2)
dω′. (4.63)
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Equations (4.62) and (4.63) are subtracted, and the result is analogous to
the results of Palmer et al. [110] for the phase of a measured amplitude. The
doubly subtracted K-K relation for the real refractive index is of the form

η(ω) − 1
(ω2 − ω2

1)(ω2 − ω2
2)

− η(ω1) − 1
(ω2 − ω2

1)(ω2
1 − ω2

2)
− η(ω2) − 1

(ω2 − ω2
2)(ω2

1 − ω2
2)

=
2
π

P

∞∫
0

ω′κ(ω′)
(ω′2 − ω2)(ω′2 − ω2

1)(ω′2 − ω2
2)

dω′.
(4.64)

In a similar manner, singly and doubly subtracted K-K relations can be gen-
eralized for arbitrary times subtracted K-K relations. The general formula for
Q times subtracted K-K relations for the reflectancespectrum was presented
in the literature [110]. Here similar formulas are presented for the refractive
index:

η(ω) − 1 =

[
(ω2 − ω2

2)(ω2 − ω2
3) · · · (ω2 − ω2

Q)
(ω2

1 − ω2
2)(ω2

1 − ω2
3) · · · (ω2

1 − ω2
Q)

]
[η(ω1) − 1] + · · ·

+

[
(ω2 − ω2

1) · · · (ω2 − ω2
j−1)(ω

2 − ω2
j+1) · · · (ω2 − ω2

Q)
(ω2

j − ω2
1) · · · (ω2

j − ω2
j−1)(ω

2
j − ω2

j+1) · · · (ω2
j − ω2

Q)

]
[η(ωj) − 1] + · · ·

+

[
(ω2 − ω2

1)(ω2 − ω2
2) · · · (ω2 − ω2

Q−1)
(ω2

Q − ω2
1)(ω2

Q − ω2
2) · · · (ω2

Q − ω2
Q−1)

]
[η(ωQ) − 1]

+
2
π

[
(ω2 − ω2

1)(ω2 − ω2
2) · · · (ω2 − ω2

Q)
]
P

∞∫
0

ω′κ(ω′)dω′

(ω′2 − ω2) · · · (ω′2 − ω2
Q)

,

(4.65)

κ(ω) =

[
(ω2 − ω2

2)(ω2 − ω2
3) · · · (ω2 − ω2

Q)
(ω2

1 − ω2
2)(ω2

1 − ω2
3) · · · (ω2

1 − ω2
Q)

]
[η(ω1) − 1] + · · ·

+

[
(ω2 − ω2

1) · · · (ω2 − ω2
j−1)(ω

2 − ω2
j+1) · · · (ω2 − ω2

Q)
(ω2

j − ω2
1) · · · (ω2

j − ω2
j−1)(ω

2
j − ω2

j+1) · · · (ω2
j − ω2

Q)

]
[η(ωj) − 1] + · · ·

+

[
(ω2 − ω2

1)(ω2 − ω2
2) · · · (ω2 − ω2

Q−1)
(ω2

Q − ω2
1)(ω2

Q − ω2
2) · · · (ω2

Q − ω2
Q−1)

]
[η(ωQ) − 1]

+
2
π

[
(ω2 − ω2

1)(ω2 − ω2
2) · · · (ω2 − ω2

Q)
]
P

∞∫
0

[η(ω) − 1]dω′

(ω′2 − ω2) · · · (ω′2 − ω2
Q)

.

(4.66)
Similar results can also be obtained for linear susceptibility as well as for the
logarithm of linear reflectivity. Multiply subtractive K-K relations have very
rapid convergence, which significantly reduces the errors caused by extrapo-
lation. With a suitable choice of reference points, the optical constants of the
medium can be determined by a single reflectance measurement [110].



5 General Properties
of the Nonlinear Optical Response

5.1 Nonlinear Optics: A Brief Introduction

Linear optics provides a complete description of light–matter interaction only
in the limit of weak radiation sources. When we consider more powerful ra-
diation sources, the phenomenology of light–matter interaction is much more
complex and interesting. Entirely new classes of processes, related to the
effects of nonlinearity in the interaction, can be observed experimentally.
Therefore, new theoretical tools have to be introduced in order to account
for these phenomena.

When matter interacts with one or more intense monochromatic light
sources, a very notable nonlinear effect is frequency mixing i.e. the presence
in the spectrum of the outgoing radiation of nonvanishing frequency compo-
nents corresponding to the sum and difference of the frequency components
of the incoming radiation. This process is greatly enhanced when either the
incoming radiation or their combinations are in resonance with the permit-
ted transitions of the material. Within the large family of frequency mixing
phenomena, a very relevant process is harmonic on generation. Harmonic gen-
eration is the production of outgoing radiation with relevant spectral com-
ponents at frequencies that are integral multiples of the frequencies of the
incoming monochromatic light sources. Another very relevant family of non-
linear effects is multi–photon absorption phenomena, i.e. processes where the
electronic transitions are assisted by the simultaneous intervention of more
than one photon. In recent years, nonlinear optical investigations have gained
fundamental importance in the study of the properties of gases, liquids, and
condensed matter, and they have assumed great relevance in technological
applications as well as in the study of organic and biological materials.

In 1931, Goppert–Mayer [41] proposed that two-photon assisted transi-
tions between two states were theoretically possible, but only in the 1950s,
when suitable monochromatic radiation sources became available in the
regions of radiowaves and microwaves, were nonlinear processes observed.
Hughes et al. [111] measured the two-photon transition between two hy-
perfine levels, and Battaglia et al. [112] observed the two-photon transition
between the rotational levels of the carbon oxy-sulphide (OCS) molecule.

In the 1960s, the advent of laser technology permitted observation of non-
linear phenomena at optical frequencies. In 1961, Kaiser and Garrett [113]
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observed the first two-photon transitions in solid matter and in the same year,
Franken et al. [114] experimentally proved the possibility of second-harmonic
on generation. These experiments had a great impact on the scientific com-
munity and provided a strong impulse for theoretical and experimental re-
search in nonlinear optics. Woodbury and Ng [115] observed the phenomenon
of stimulated Raman absorption [116, 117], Marker et al. [118] reported on
third-harmonic-generation, and Singh and Bradley [119] observed the three-
photon absorption process. A book by Bloembergen [17] provides a complete
report of the scientific activity in this rapidly growing branch of physics, and
recently a complete collection of the relevant papers from the early days of
nonlinear optics was published [120].

Exploiting the phenomena of frequency mixing in suitable materials and
taking advantage of the transitional resonances in order to obtain good power
conversion, it was possible to obtain new coherent and monochromatic sources
with peak frequencies different from those of the primary sources, and thus
increase the possibilities of the experimental study of nonlinear optical phe-
nomena. In the 1970s, tunable monochromatic light sources became available
thanks to the development of solid-state and dye lasers [121, 122]. This per-
mitted nonlinear spectroscopic studies that could span a certain frequency
range, instead of being limited to given discrete frequencies. The passage from
discrete to a continuum greatly improved the investigation of the nonlinear
optical properties of materials.

Thereafter, the development of the mode-locked laser permitted the gener-
ation of pulses shorter than 10−9s with very high peak power. This permitted
experimental study of transient nonlinear phenomena and of nonlinear effects
of a higher order. Since the 1980s, lasers with peak intensities of 1013 W/cm2

or more have become available, so that very high order nonlinear processes,
such as the production of harmonics of an order higher than 100, have been
possible [123–125].

The theory of nonlinear optics is based mostly on a perturbative approach
introduced by Bloembergen [17], which is essentially a semiclassical analogue
of the Feynman graphs formalism [16] and which generally adopts dipolar ap-
proximation. In the perturbative approach, the nonlinear optical properties
of a material are fully described by nonlinear susceptibilities, which are ob-
tained by applying the Fourier transform to nonlinear Green functions, which
describe the higher order dynamics of the system. The nonlinear Green func-
tion can be obtained using a generalization of Kubo’s linear response the-
ory [126]. Results obtained using the perturbative theory are generally in
good agreement with the experimental data unless we consider the interac-
tion of matter with ultra-intense lasers, such as those responsible for very
high order harmonic-generation. A detailed presentation of the perturbative
theory for nonlinear optics and of comparison with experimental data can be
found in recent books by Butcher and Cotter [18] and Boyd [19].
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In this chapter, we will review the main points of the material presented
in the past decade dealing with the establishment of general integral prop-
erties for nonlinear optical susceptibilities. We extend the results obtained
in Chap. 3 to higher orders of perturbations. We follow the perturbative ap-
proach to describe nonlinear optical processes, and we adopt the general
formalism of the density matrix [11]. We also present a discussion of non-
linear local field effects and of how they can be described with the effective
medium approximation for both homogeneous and nanostructured media.

5.2 Nonlinear Optical Properties

In our analysis, we assume the dipolar approximation and generalize the
definition of polarization presented in Chap. 3 to all orders of nonlinearity.
Following (2.34), total polarization can be expressed as the sum of linear and
nonlinear contributions:

P (t) = P (1)(t) + P NL(t), (5.1)

where total nonlinear polarization P NL(t) is defined as the sum over the
various orders of nonlinearity:

P NL (t) =
∞∑

n=2

P (n) (t). (5.2)

We define nth-order nonlinear polarization as a multiple convolution:

P
(n)
i (t) =

∞∫
−∞

G
(n)
ij1...jn

(t1 . . . tn)Ej1(t − t1) . . . Ejn(t − tn)dt1 . . .dtn, (5.3)

where the nonlinear Green function is symmetrical in time variables and
respects the temporal causality principle

G
(n)
ij1...ji...jk...jn

(t1, . . . , ti
, . . . , tk, . . . , tn)

= G
(n)
ij1...jk...ji...jn

(t1, . . . , tk, . . . , ti, . . . , tn) ,
(5.4)

Gij1...jn
(t1, . . . , tn) = 0, ti < 0, 1 ≤ i ≤ n. (5.5)

Computing the Fourier transform of expression (5.3), we obtain

P
(n)
i (ω) =

∞∫
−∞

χ
(n)
ij1...jn

(
n∑

l=1

ωl; ω1, . . . , ωn

)
Ej1(ω1) . . . Ejn(ωn)

× δ

(
ω −

n∑
l=1

ωl

)
dω1 . . .dωn,

(5.6)
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where the Dirac delta function δ guarantees that the sum of the arguments
of the Fourier transforms of the electric field equals the argument of the
Fourier transform of polarization. This means that each ω component of the
nth-order nonlinear polarization results from the interaction of n photons
mediated by the material under examination, which is described by the non-
linear susceptibility function, defined as

χ
(n)
ij1...jn

(
n∑

l=1

ωl; ω1, . . . , ωn

)

=

∞∫
−∞

G
(n)
ij1...jn

(t1, . . . , tn) exp

[
i

n∑
l=1

ωltl

]
dt1 . . .dtn.

(5.7)

It is customary in the literature [18, 19] to set as the first argument of the
susceptibility the sum of all the frequency arguments before the semicolon.
From definition (5.7) it is possible to derive the a priori properties of the
nonlinear susceptibility functions by considering the properties of the non-
linear Green function described in expressions (5.4). The symmetry of the
nonlinear Green function with respect to the time variable exchange implies
that nonlinear susceptibility functions obey a symmetrical property for the
frequency variables

χ
(n)
ij1...ji...jk...jn

(
n∑

l=1

ωl; ω1, . . . , ωi, . . . ωk, . . . , ωn

)

= χ
(n)
ij1...jk...ji...jn

(
n∑

l=1

ωl; ω1, . . . , ωk, . . . ωi, . . . , ωn

) (5.8)

for all i, j ∈ {1, . . . , n}. Since P (n)(t) and the nonlinear Green function are
real, we derive, along the lines of the previously analyzed linear case, that at
every order n, the following relation holds:

χ
(n)
ij1...jn

(
n∑

l=1

−ωl; −ω1, . . . ,−ωn

)
=

[
χ

(n)
ij1...jn

(
n∑

l=1

ωl; ω1, . . . , ωn

)]∗
,

(5.9)
so that, separating the real and imaginary parts, we can write

Re

{
χ

(n)
ij1...jn

(
n∑

l=1

−ωl; −ω1, . . . ,−ωn

)}

= Re

{
χ

(n)
ij1...jn

(
n∑

l=1

ωl; ω1, . . . , ωn

)}
,

(5.10)
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−Im

{
χ

(n)
ij1...jn

(
n∑

l=1

−ωl; −ω1, . . . ,−ωn

)}

= Im

{
χ

(n)
ij1...jn

(
n∑

l=1

ωl; ω1, . . . , ωn

)}
.

(5.11)

However, we wish to emphasize that it has been suggested that in nonlinear
optics, the nonlinear Green function may also take a complex form [127,128].

We consider the realistic case of the interaction of matter with m
monochromatic plane waves with different amplitude, polarization, and fre-
quency:

Ej (t) =
m∑

i=1

E
(i)
j exp[−iωit] + c.c., (5.12)

where E
(i)
j is the amplitude of the electric field of the ith wave in the j-

direction, so that:

Ej (ω) =
m∑

i=1

2πE
(i)
j δ (ω − ωi) + 2πE

(i)
j δ (ω + ωi). (5.13)

From formulas (5.4) and (5.13), we deduce that each spectral component of
the nth-order polarization is given by the sum ωΣ of n among the 2m (m
positive and m negative) frequencies characterizing the spectrum of incoming
radiation:

P
(n)
i (ω) =

∑
Ωi∈{±ω1,...±ωm}

χ
(n)
ij1...jn

(
n∑

l=1

Ωl; Ω1, . . . , Ωn

)

× E
(Ω1)
j1

. . . E
(Ωn)
jn

2πδ

(
ω −

n∑
i=1

Ωi

)
,

(5.14)

where E
(Ωi)
ji

= E
(i)
ji

if Ωi = ±ωi. Separating each frequency component in
expression (5.14), we obtain

P
(n)
i (ω) =

∑
{ωΣ}

P
(n)
i (ωΣ) 2πδ (ω − ωΣ) , (5.15)

where we are summing over all possible distinct values {ωΣ} of the sum of
n among the 2m frequencies in the electric field spectrum. The coefficients
P

(n)
i (ωΣ) are such that

P
(n)
i (t) =

∑
ωΣ

P
(n)
i (ωΣ) exp[−iωΣt]. (5.16)

The presence in nonlinear polarization of all possible combinations fre-
quencies of the incoming radiation is commonly referred to as frequency mix-
ing.
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Fig. 5.1. Scheme of a pump-and-probe experiment where the two laser beams have
the same polarization unit vectors. Black line: pump laser; dotted line: probe laser

5.2.1 Pump-and-Probe Processes

Two highly relevant nonlinear physical phenomena that can be de-
scribed using this quite general formalism are harmonic-generation processes
and pump-and-probe processes. We will deal extensively with harmonic-
generation processes in the next chapters. Here we consider the relevant and
instructive example of pump-and-probe processes. We consider the related
though experimental setting, which is depicted in Fig. 5.1, where two lasers
are present. We make the simplifying assumption that both light beams are
linearly polarized in the x-direction:

E(t) = x̂E(1) exp[−iω1t] + x̂E(2) exp[−iω2t] + c.c. (5.17)

We assume that index (1) refers to the probe laser, whose frequency can be
changed, and index (2) to the pump laser, whose frequency is fixed. Then,

E(2)  E(1). (5.18)

We wish to consider the expression of the polarization of the third order
at frequency ωΣ = ω1, i.e. the first variation in the linear optical response
at the frequency of the probe laser due to light–matter coupling. Specifying
k = 3 and ω = ω1 in expression (5.15) and considering the form (5.17) of the
incoming radiation, we obtain

P
(3)

(ω1) = 6E(1)
(
E(2)

)2
χ

(3)
ixxx (ω1; ω1, ω2,−ω2)

+ 3
(
E(1)

)3
χ

(3)
ixxx (ω1; ω1, ω1,−ω1) ,

(5.19)

where the numeric coefficients can be deduced using combinatorial argu-
ments, considering that the symmetry relation (5.8) holds. We underline that
since the probe laser is much less intense than the pump laser, the first term
is largely dominant in expression (5.19).
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Fig. 5.2. Real and imaginary parts of the pump-and-probe susceptibility from a
simplified model. The peaks corresponding to the dynamic Stark effect (DSE), two-
photons absorption (TPA), and stimulated Raman scattering (SRS) are indicated.
Reproduced from [129]

We emphasize that, since expression (5.19) represents the first nonlinear
correction of the linear response at the probe laser frequency, it is possible
to derive a correspondence between the nonlinear change in the index of
refraction and the pump-and-probe susceptibility:

NNL(ω1, ω2, E1, E2) = ∆N(ω1) = ∆η(ω1) + i∆κ(ω1)

= 4π
6
[
E(2)

]2
χ(3) (ω1; ω1, ω2,−ω2) + 3

[
E(1)

]2
χ(3) (ω1; ω1, ω1,−ω1)

2N(ω1)

∼ 4π
3
[
E(2)

]2
χ(3) (ω1; ω1, ω2,−ω2)

N(ω1)
= NNL(ω1, ω2, E2),

(5.20)

where we have used a scalar notation and we have simplified the expression
by using condition (5.18). We underline that in expression (5.20), N(ω1) is
the linear index of refraction introduced in expression (3.16), and we have
used the ∆ symbol to emphasize that NNL(ω1, ω2, E2) is the first correction
of the linear refraction index.

The dominant term of the quantity (5.19) – and correspondingly, of the
quantity (5.20) – is especially relevant in physical terms since the imaginary
part is related to the first-order nonlinear induced absorption, which includes
the dissipative phenomena of two-photon absorption [42,43,130–132], stimu-
lated Raman scattering [133–136], and dynamic Stark effect [137–141], while
the real part describes nonlinear dispersive effects [14]. Figure 5.2 shows the
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values of the real and imaginary parts of the first term in expression (5.19)
obtained using a simple anharmonic oscillator model [129].

The second term of expression (5.19) describes all of the nonlinear phe-
nomena resulting from the probe laser only and, when E(1) is factored out,
is usually referred to as degenerate susceptibility: the imaginary part con-
tributes to the absorption (dynamic Kerr effect), while the real part con-
tributes to changing the linear refractive index (dynamic Kerr birefringence).

5.3 Microscopic Description of Nonlinear Polarization

In this section, we provide an explicit expression of the general quantum me-
chanical description of nonlinear Green function, so that the general expres-
sion of nonlinear susceptibility can be derived. The nonlinear susceptibility
contains all the information on the nonlinear optical properties of a system.

Following (2.34), we define the nth-order nonlinear polarization as the
expectation value [17–19] of the electric dipole moment per unit volume over
the nth-order perturbative term of the density operator (2.32):

P
(n)
i (t) ≡ 1

V
Tr

{
N∑

α=1

−erα
i ρ(n)(t)

}
. (5.21)

Therefore, we consider the nth differential equation in the concatenated sys-
tem (2.33):

i�∂tρ
(n) (t) =

[
H0, ρ

(n) (t)
]

+
[
Ht

I , ρ
(n−1) (t)

]
, (5.22)

with the boundary condition ρ(n)(0) = 0. The solution of this equation can
be obtained recursively by considering each increasing perturbation order
[18, 19], so that ρ(n)(t) can be expressed only as a function of the dipole
operators and of ρ(0):

ρ(n) (t) =
(

e

−i�

)n
t∫

−∞
. . .

tn−1∫
−∞

Ej1 (t1) . . . Ejn (tn)

×
[

N∑
α=1

rα
j1 (t1 − t) , . . .

[
N∑

α=1

rα
jn

(tn − t) , ρ (0)

]
. . .

]
dt1 . . .dtn.

(5.23)

Considering that the following relation holds [18]:
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Tr

{
N∑

α=1

rα
i

[
N∑

α=1

rα
j1 (−t1) , . . .

[
N∑

α=1

rα
jn

(−tn) , ρ (0)

]
. . .

]}

= (−1)n Tr

{[
N∑

α=1

rα
jn

(−tn) , . . . ,

[
N∑

α=1

rα
j1 (−t1) ,

N∑
α=1

rα
i

]
. . .

]
ρ (0)

}
,

(5.24)

we can express the nth-order nonlinear polarization as the convolution of a
nonlinear Green function multiplied by n electric fields:

P
(n)
i (t) =

∞∫
−∞

. . .

∞∫
−∞

G
(n)
ij1...jn

(t1, . . . , tn)

× Ej1 (t − t1) . . . Ejn (t − tn) dt1 . . .dtn,

(5.25)

where the nth-order nonlinear Green function is

G
(n)
ij1...jn

(t1, . . . , tn) = − en+1

V (−i�)n θ (t1) . . . θ (tn − tn−1)

× Tr

{[
N∑

α=1

rα
jn

(−tn) , . . . ,

[
N∑

α=1

rα
ji

(−t1) ,

N∑
α=1

rα
i

]
. . .

]
ρ (0)

}
.

(5.26)

Therefore, the nth-order nonlinear polarization P (n)(t) can generally be ex-
pressed as the expectation value of a t-dependent function over the thermo-
dynamic equilibrium unperturbed density operator of the physical system
under analysis, as obtained in the previous chapter for the linear case. All
optical properties – linear and nonlinear – of a given physical system then
depend only on its statistically relevant ground state.

Using definition (5.7), the nth-order nonlinear susceptibility of a general
quantum system can then be expressed as follows:

χ
(n)
ij1...jn

(
n∑

l=1

ωj ; ω1, . . . , ωn

)

=

∞∫
−∞

G
(n)
ij1...jn

(t1, . . . , tn) exp

[
i

n∑
l=1

ωltl

]
dt1 . . .dtn

= − en+1

V (−i�)n

∞∫
−∞

θ (τ1) . . . θ (tn − tn−1) exp

[
i

n∑
l=1

ωltl

]

× Tr

{[
N∑

α=1

rα
jn

(−tn) , . . . ,

[
N∑

α=1

rα
j1 (−t1) ,

N∑
α=1

rα
i

]
. . .

]
ρ (0)

}
dt1 . . .dtn.

(5.27)
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In the linear case, the study of asymptotic behavior reveals that only the
zeroth moment of the susceptibility has asymptotic behavior fast enough
for the dispersion relation to converge. Hence, only one pair of independent
dispersion relations – and of sum rules – can be established. It is reasonable
to guess that the asymptotic decrease in nonlinear susceptibility for large
values of each frequency variable is strictly faster than for linear susceptibility.
The conceptual reason is that the electrons interacting with very energetic
photons behave indistinguishably from the components of a free electron gas,
since on the very short timescale relevant to the light–matter interaction,
the other forces affecting the electrons are negligible. This is in conjunction
with the observation that free electron gas behavior is already asymptotically
saturated by considering the linear susceptibility alone, as seen in the Chap. 3.

5.4 Local Field and Effective Medium Approximation
in Nonlinear Optics

In this section, we extend the analysis performed in Sect. 3.4 by analyzing how
the local field effects influence the nonlinear optical properties of materials.
We first present a general theory covering the case of homogeneous media
and then focus our attention on nanostructured media. We show how the
consideration of local field effects can be used to propose new nanostructured
materials having well-defined optical properties.

5.4.1 Homogeneous Media

The nonlinear optical response of the elementary component of a physical
system is thoroughly described by suitable microscopic hyperpolarizability
β(n) [18,19], which connects the nonlinear polarization p(n) of the element to
the local electric field acting on it:

p(n)

⎛⎝ n∑
j=1

ωj

⎞⎠ = β(n)

⎛⎝ n∑
j=1

ωj ; ω1, . . . , ωn

⎞⎠Eloc(ω1) · Eloc(ωn). (5.28)

Along the line of the linear case, the macroscopic nonlinear polarization re-
sults are

P (n)

⎛⎝ n∑
j=1

ωj

⎞⎠ =
1
V

∫
V

p(n)

⎛⎝ n∑
j=1

ωj

⎞⎠dv

= ℵβ(n)

⎛⎝ n∑
j=1

ωj ; ω1, . . . , ωn

⎞⎠Eloc(ω1) · Eloc(ωn),

(5.29)
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where (3.47) connects the number of elementary constituents per unit volume
with the number of electrons per unit volume. On the other hand, nonlinear
polarization can be expressed as result of the nonlinear coupling of an external
electric field with an effective nonlinear susceptibility:

P (n)

⎛⎝ n∑
j=1

ωj

⎞⎠ = χ
(n)
eff

⎛⎝ n∑
j=1

ωj ; ω1, . . . , ωn

⎞⎠E(ω1) · E(ωn). (5.30)

In order to obtain an expression of the effective susceptibility, we have to
equate expressions (5.29) and (5.30). Considering that the local field in a
nonlinear medium can be expressed as

Eloc(ω) = E(ω) +
4π

3
P (1)(ω) +

4π

3
P NL(ω), (5.31)

we find that the effective macroscopic nonlinear susceptibility, which takes
into account local field effects, is related to the nth-order microscopic hyper-
polarizability β(n) in the following way:

χ
(n)
eff

⎛⎝ n∑
j=1

ωj ; ω1, . . . , ωn

⎞⎠ = ℵL

⎛⎝ n∑
j=1

ωj

⎞⎠L(ω1) . . . L(ωn)

× β(n)

⎛⎝ n∑
j=1

ωj ; ω1, . . . , ωn

⎞⎠ ,

(5.32)

where L(ω) is defined as:

L(ω) =
εeff(ω) + 2

3
= 1 +

4π

3
χ

(1)
eff (ω) = 1 +

4π

3
ℵα(ω)

1 − 4π
3 ℵα(ω)

= 1 +
4π

3
χ(1)(ω)

1 − 4π
3 χ(1)(ω)

=
1

1 − 4π
3 χ(1)(ω)

,

(5.33)

where we have used (3.55)–(3.56). Similarly to the linear case, if ℵ is small,

χ
(n)
eff

⎛⎝ n∑
j=1

ωj ; ω1, . . . , ωn

⎞⎠ ∼ ℵβ(n)

⎛⎝ n∑
j=1

ωj ; ω1, . . . , ωn

⎞⎠ . (5.34)

The expression of nonlinear susceptibility presented in this work has been
derived from a strictly microscopic treatment derived from the nonlinear
Green function presented in (5.26), so that

χ(n)

⎛⎝ n∑
j=1

ωj ; ω1, . . . , ωn

⎞⎠ = ℵβ(n)

⎛⎝ n∑
j=1

ωj ; ω1, . . . , ωn

⎞⎠ . (5.35)
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Hence, we find that the following relation holds between the effective macro-
scopic nonlinear susceptibility and the nonlinear susceptibility proposed in
expression (5.27):

χ
(n)
eff

⎛⎝ n∑
j=1

ωj ; ω1, . . . , ωn

⎞⎠ = L

⎛⎝ n∑
j=1

ωj

⎞⎠L(ω1) . . . L(ωn)

× χ(n)

⎛⎝ n∑
j=1

ωj ; ω1, . . . , ωn

⎞⎠ .

(5.36)

The experimental setup for the measurement of linear and nonlinear local
field factors was established by Maki et al. [45] who measured the reflectivity
and surface phase conjugation of a dense atomic vapor. The former quantity
was used to determine the linear microscopic polarizability and the latter
for determination of the second hyperpolarizability. They found good agree-
ment between the measured data and theoretical values calculated from the
Clausius-Mossotti equation.

5.4.2 Two-Phase Media

In the field of optical physics, nanostructures have attracted much interest
during the past two decades as a new class of nonlinear optical materials.
There is a great demand for materials with large nonlinear optical responses
and suitable spectral properties because it is assumed that such materials
will play an important role in future photonic devices and all-optical sig-
nal processing [142,143]. Conventionally, the development of a new optically
nonlinear material has included a search for materials with suitable nonlin-
ear optical properties. However, a more advanced way to enhance nonlinear
properties would be to find suitable constituent materials and combine them
into a nanostructure.

The nonlinear optical properties of nanostructures, including Maxwell
Garnett [62, 144], Bruggeman [47, 71], metal-coated [145], and layered [48]
nanostructures, have been studied widely both theoretically and experimen-
tally [146, 147]. The interest in such nanocomposites arises from the possi-
bility of enhancing their optical nonlinearity: the effective nonlinear optical
susceptibility of the nanostructure material can exceed those of its constituent
components in a wide range of nonlinear processes such as four-wave mix-
ing, third-harmonic-generation, and nonlinear refractive index [148]. This en-
hancement is due to the collective enhancement of local electric fields in the
medium. Recently, the enhancement of nonlinearity was verified experimen-
tally [146]. Moreover, optical bistability, which has great potential in optical
switching, has been demonstrated in weak nonlinear nanostructures [149]
and even in a thin layer of optically nonlinear material [150], and has been
explained in terms of local field effects.
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The Maxwell Garnett Nanosphere System

The nonlinear optical properties of nanospheres [60,144,151–153] and coated
nanospheres [145,154] have been intensively studied. The theory and mathe-
matical formulas for effective third-order degenerate susceptibility were given
by Sipe and Boyd [144] for cases where the nanospheres are optically non-
linear while the host material acts in an optically linear manner and vice
versa. They also derived an expression for the general case where both the
nanospheres and the host material are optically nonlinear. The effective de-
generate third-order susceptibility for linearly polarized light can be expressed
as follows (for a more detailed derivation see [144]):

χ
(3)
eff (ω; ω, ω, −ω) = fi[Li(ω)]2|Li(ω)|2χ(3)

i (−ω; ω, ω, −ω)

+ [Lh(ω)]2|Lh(ω)|2[(1 − fi) + fix(ω)]χ(3)
h (−ω; ω, ω, −ω),

(5.37)

where the factor x(ω) is given by

x(ω) =
8
5
[υ(ω)]2|υ(ω)|2 +

6
5
υ(ω)|υ(ω)|2 +

2
5
[υ(ω)]3 +

18
5
{|υ(ω)|2 + [υ(ω)]2

}
.

(5.38)
The local field factors of nanospheres (=inclusions) and the host material
are, respectively,

Li(ω) =
εeff(ω) + 2εh(ω)
εi(ω) + 2εh(ω)

, (5.39)

Lh(ω) =
εeff(ω) + 2εh(ω)

3εh(ω)
. (5.40)

The general expression (5.37) can be simplified if the volume fraction of the
inclusions is small, as assumed in the MG model. The effective dielectric
function of such a composite approaches the value of the host material and
the local field factor of the host approaches unity. Now (5.37) can be written
in the form

χ
(3)
eff (ω; ω, ω, −ω) = f i[Li(ω)]2|Li(ω)|2χ(3)

i (−ω; ω, ω, −ω)

+ χ
(3)
h (−ω; ω, ω, −ω).

(5.41)

The approximation of the effective third-order susceptibility is linearly de-
pendent on the volume fraction fi of the inclusions at small values of fi. The
recent study by Prot et al. [60] dealt with gold nanospheres embedded in a
silica host. A large enhancement was observed in the imaginary part of the
degenerate third-order nonlinear susceptibility, which was plotted as a func-
tion of the volume fraction of nanospheres. They observed that the linear
dependence on fi is lost when the volume fraction exceeds 10%, which is in
agreement with the theory.
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Equation (5.41) predicts the possibility of the cancellation of nonlinear
absorption in a Maxwell Garnett nanosphere system. Smith et al. [153] mea-
sured the nonlinear absorption from a metal colloid of gold nanospheres that
were embedded in the water, using the Z-scan technique. The cancellation
is due mainly to the imaginary part of the local field factor of the inclu-
sions. Materials with a large nonlinear refractive index and negligible non-
linear absorption are ideal, for instance, in optical switching. Unfortunately,
in bulk materials, a high nonlinear refractive index is usually related to high
nonlinear absorption. Therefore, the aim in nonlinear optical nanostructure
engineering is usually to find optimum constituent materials, so that the non-
linear absorption of incident light is negligible. Conversely, in some cases, it
may even be desirable to have large nonlinear absorption such as two-photon
absorption-induced two-photon fluorescence from a microvolume, which has
great potential in drug discovery and in novel bioaffinity assays [155]. In con-
clusion, the nonlinear optical properties of an MG nanosphere system can
be optimized according to the applications by appropriate choice of the con-
stituent materials and volume fraction.

The Bruggeman Effective Medium Theory

For randomly intermixed constituents, effective nonlinear susceptibilities
should be considered with a statistical theory [59]. Fortunately, with the
approximation of the uniformity of the electric field inside each constituent,
the effective degenerate third-order susceptibility is given by [47]

χ
(3)
eff (ω; ω, ω, −ω) =

∑
i

1
fi

∣∣∣∣∂εeff(ω)
∂εi(ω)

∣∣∣∣(∂εeff(ω)
∂εi(ω)

)
χ

(3)
i (−ω; ω, ω, −ω), (5.42)

where i denotes the summation of the constituents. For a two-phase Brugge-
man model, the explicit expressions for the derivatives have been presented
in [47]. Equation (5.42) predicts that there can be a small enhancement in
the third-order nonlinear susceptibility, when the linear refractive index of
the linear constituent is larger than that of the nonlinear constituent [59]. In
addition, Lakhtakia [156] investigated the complex linear dielectric function
and nonlinear susceptibility of Bruggeman effective media using the strong
permittivity fluctuation theory. One of the few experimental results was
presented by Gehr et al. [64] who investigated the nonlinear properties of a
porous glass saturated with optically nonlinear liquids by the Z-scan method.
The enhancement of nonlinear susceptibility was verified and observed to be
approximately 50%.

The Bruggeman formalism is applicable to nanosphere systems with shape
distributions. Recently, it has been shown [157,158] that shape variation can
cause the separation of the nonlinear absorption peak and the enhanced non-
linear susceptibility peak. This means that it is possible to optimize the non-
linear enhancement of the nanostructure by finding an optimum shape distri-
bution. However, the spectral properties of the constituents must be known.
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Layered Nanostructures

A mathematical expression for the effective nonlinear susceptibility of lay-
ered nanostructures has been given by Boyd and Sipe [48] starting from the
mesoscopic field inside each layer. The macroscopic field was obtained af-
ter an averaging process of the mesoscopic fields. For a two-phase structure
with TE-polarized light, the effective degenerate third-order susceptibility
becomes a summation of the constituent susceptibilities multiplied by their
volume fractions, as follows:

χ
(3)
eff (ω; ω, ω, −ω) = faχ

(3)
a (ω; ω, ω, −ω) + fbχ

(3)
b (ω; ω, ω, −ω). (5.43)

Hence, their enhancement in a nonlinear optical process cannot exist. How-
ever, for TM-polarized light, the situation changes drastically. Boyd and
Sipe [48] formulated the mathematical expression for an effective degener-
ate third-order susceptibility with TM-polarized light:

χ
(3)
eff (ω; ω, ω, −ω) = fa

∣∣∣∣εeff(ω)
εa(ω)

∣∣∣∣2 [εeff(ω)
εa(ω)

]2

χ(3)
a (ω; ω, ω, −ω)

+ fb

∣∣∣∣εeff(ω)
εb(ω)

∣∣∣∣2 [εeff(ω)
εb(ω)

]2

χ
(3)
b (ω; ω, ω, −ω).

(5.44)

Therefore, if εa > εb and χ
(3)
a < χ

(3)
b , the effective third-order susceptibil-

ity exceeds those of its constituent components. The terms in brackets in
(5.44) represent the local field factors for the constituents. The analysis of
the nonlinear properties of layered structures presented above is based on
the effective medium approximation. Furthermore, an analysis based on a
nonlinear wave equation has been examined [159], yielding analogous results.
Theoretically, there can be enhancement up to a factor of 10 when the ratio
of the linear refractive indices of the constituents is equal to 2. In their ex-
perimental measurement, Fischer et al. [146] obtained enhancement only by
a factor of 1.35. This was caused by the small difference between the linear
refractive indices of the organic polymer investigated and of titanium dioxide,
in agreement with the theory.

Layered nanostructures are assumed to play an important role in the
frame of nonlinear optics. It has been demonstrated that the electro-optic
effect can be enhanced with layered nanostructures [160]. The enhancement
of nonlinearity in layered structures makes them very attractive in all-optical
signal processing. Kishida et al. [142, 143] observed large nonlinearity in
transition-metal oxides and halides. Such materials combined into a layered
nanostructure may possess huge third-order nonlinearity and may find appli-
cations in novel optoelectronic device development.

5.4.3 Tailoring of the Optical Properties of Nanostructures

In this section, the linear and nonlinear optical properties of Maxwell Gar-
nett, Bruggeman, and layered nanostructures are simulated using two conju-
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gated polymers (polythiophene PT10 and polysilane PDHS) with nanoscale
TiO2 particles. Polythiophenes as well as polydiacetylenes are π-conjugated
organic polymers, whereas polysilanes are σ-conjugated polymers of Si atoms.
Most of the conjugated polymers have a center of symmetry, and their op-
tical nonlinearities are dominated by third-order susceptibilities. These (as
well as linear susceptibilities) can be described by the properties of excitons
(electron–hole pairs) confined in one-dimensional (1-D) geometry [161, 162].
Although conjugated polymers have relatively large nonlinear optical sus-
ceptibilities, their magnitudes may still fall short of that needed for many
proposed applications in photonics.

The present simulations are performed for an effective medium using the
equations presented in the previous sections. Since the effective nonlinear
susceptibility of a nanostructure is assumed to possess simultaneously real
and imaginary parts, the simulations are based on the use of the modulus
of the effective nonlinear susceptibility. Actually, in nonlinear optics, many
practical measurements yield data on the modulus of nonlinear susceptibility.
For the three effective medium models, the nonlinear material is a conjugated
polymer. It is either a polythiophene, poly(3-decylthiophene) (PT10), or a
polysilane, poly(dihexylsilane) (PDHS), both exhibit a third-order nonlinear
optical response. The linear material is amorphous TiO2, which has a high
linear refractive index and negligible optical nonlinearity. Both polymers have
a linear refractive index lower than that of TiO2, as presented in Fig. 5.3a,
predicting the enhancement in nonlinearity.

The dielectric function for amorphous TiO2 was obtained from the ellipso-
metric study of Joseph and Gagnaire [164]. For PT10 and PDHS, the dielec-
tric functions were computed by the Kramers-Kronig analysis with the aid of
published absorption spectra [165, 166] and refractive index data [167, 168].
The degenerate third-order susceptibilities of PT10 and PDHS were calcu-
lated by using the standard formulas given in [169]. The dipole matrix ele-
ments needed in the calculation were obtained from the experimental analy-
sis by Torruellas et al. [166] (in the case of PT10) and Hasegawa et al. [165]
(PDHS). Figure 5.3b shows the amplitude spectrum of χ(3)(−ω; ω, ω, −ω) of
polymers PT10 and PDHS. The resonance peak of PT10 at 2.4 eV is almost
twice as large as that of PDHS at 3.3 eV. The effective dielectric function
and the effective third-order nonlinear susceptibility were first calculated for
nanostructures. Figure 5.4a,b shows the modulus of the corresponding effec-
tive nonlinear susceptibilities. The modulus of the effective third-order non-
linear susceptibility was used to calculate the enhancement of the composite
as a function of the volume fraction of the inclusions, as follows:

Enhancement =
|χ(3)

eff (ω; ω, ω, −ω)|max

|χ(3)
a (ω; ω, ω, −ω)|max

, (5.45)

where the maximum of the modulus is obtained from spectral data shown
in Fig. 5.4. In (5.45) a denotes the constituent nonlinear polymer PT10 or
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Fig. 5.3. Amplitude spectra of the modulus of (a) dielectric function and (b)
nonlinear degenerate third-order susceptibility of the constituent materials. Repro-
duced from [163]

PDHS. The largest enhancement is obtained for layered nanostructures, as
presented in Figs. 5.5a–5.8a. The upper limit of volume fraction was restricted
to a value of 0.25 in the MG nanosphere system. From Fig. 5.5a, it can be
observed that the enhancement in the MG model is a monotonically grow-
ing function of the volume fraction of the present constituents. However, in
Bruggeman and layered structures there will be a maximum value for the
enhancement, as presented in Figs. 5.6a–5.8a. Moreover, the enhancement in
such structures is an unambiguous function of the volume fraction. In other
words, for instance, in the case of Fig. 5.7a, the same enhancement (= 1.75)
can be obtained when the volume of the inclusions is either approximately
0.35 or 0.62. This indicates that in Bruggeman and layered nanostructures,
and in the frame of the present constituents, it is possible to optimize the
enhancement by choosing the appropriate volume fractions of constituents.

As shown in Sect. 3.4.2, in the MG nanostructures, the maximum of the
linear absorption spectrum shifts as a function of the volume fraction of
inclusions. This shift occurs usually toward the lower energies, as the volume
fraction of inclusions increases [62]. In the nonlinear case, it is possible to
evaluate the blueshift of the peak of the modulus of the degenerate nonlinear
susceptibility of nanostructures as a function of the volume fraction of the
TiO2 constituent. The relative blueshift is defined as follows:
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Fig. 5.4. Amplitude spectra of the modulus of the effective nonlinear susceptibility
of (a) PDHS-TiO2 and (b) PT10-TiO2 nanostructures. Bold lines: pure polymers.
Dashed lines: Maxwell Garnett nanosphere system with volume fraction fTiO2 =
0.25. Dash-dotted lines: Bruggeman model with shape factor g = 1/3 and volume
fraction fTiO2 = 0.5. Dotted lines: Bruggeman model with shape factor g = 1/2
and volume fraction fTiO2 = 0.5. Solid lines: Layered nanostructure with volume
fraction fTiO2 = 0.5. Reproduced from [163]

BS =
Erp−eff − Erp−0

Erp−0
× 100%, (5.46)

where Erp−eff denotes the energy of the resonance of the modulus of the
effective nonlinear susceptibility of the nanostructure and Erp−0 is the cor-
responding energy of the resonance of the modulus of the nonlinear suscepti-
bility of the pure polymer itself (for PT10 ≈ 2.4 eV and for PDHS ≈ 3.3 eV).
The results of the calculations are presented in Figs. 5.5b–5.8b. It can be ob-
served that for all investigated topologies, a larger enhancement is obtained
with PDHS-TiO2 nanostructures than with PT10-TiO2 constituents. On the
contrary, the relative blueshift of a PDHS-TiO2 nanostructure is always lower
than that of PT10-TiO2. In addition, in the MG model, the relative blueshift
is practically a linear function of the volume fraction. However, the relative
blueshift is a nonlinear function of the volume fraction in Bruggeman and lay-
ered nanostructures. The volume fraction that gives the maximum relative
blueshift in such topology models can be observed from Figs. 5.6b–5.8b.

In conclusion, the simulations show that it is possible to tailor the non-
linear optical properties of nanostructures by employing the frequency de-
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Fig. 5.5. (a) The enhancement and (b) relative blueshift of the effective degenerate
susceptibility of a Maxwell Garnett nanosphere system. Reproduced from [163]
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Fig. 5.6. (a) The enhancement and (b) relative blueshift of the effective degenerate
susceptibility of the Bruggeman model with a geometric shape factor g = 1/3.
Reproduced from [163]
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Fig. 5.7. (a) The enhancement and (b) relative blueshift of the effective degenerate
susceptibility of the Bruggeman model with a geometric shape factor g = 1/2.
Reproduced from [163]
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Fig. 5.8. (a) The enhancement and (b) relative blueshift of the effective degenerate
susceptibility of a layered nanostructure. Reproduced from [163]
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pendency of the linear and nonlinear susceptibilities of the constituents. In
particular, it is possible to tune both the enhancement and relative blueshift
simply by tuning the volume fraction of the constituents of the nanostructure
or by choosing the appropriate topology of the nanostructure. In principle,
the enhancement of nonlinear susceptibility due to the self-action process
provides a method for changing the intensity-dependent refractive index of
the nanostructure. This enhancement can be used, for instance, in optical
switching. In turn, the relative blueshift provides a method for wavelength
multiplexing.



6 Kramers-Kronig Relations and Sum Rules
in Nonlinear Optics

6.1 Introductory Remarks

Research in nonlinear optics has usually focused on achieving high resolution
in both experimental data and theoretical calculations. On the contrary, in
spite of the ever increasing scientific and technological relevance of nonlinear
optical phenomena, relatively little attention has been paid to the experi-
mental investigation of K-K dispersion relations and the sum rules of the
corresponding nonlinear susceptibilities. These properties are especially rele-
vant for experimental investigations of frequency-dependent nonlinear optical
properties. In the context of this kind of analysis, K-K relations and sum rules
could provide information whether or not a coherent, common picture of the
nonlinear properties of the material under investigation is available. We re-
mark that only few data sets referring to nonlinear optical phenomena span
a spectral range wide enough to permit the usage of dispersion relations.

The first heuristic applications of K-K dispersion relations theory to non-
linear susceptibilities date back to the 1960s [170–172] and 1970s [173, 174],
while a more systematic study began within the last decade. Some authors
have preferentially introduced the K-K relations in the context of ab initio
or model calculations of materials properties [175–179]; a complete review of
this approach can be found in [26]. Other authors have used a more general
approach capable of providing the theoretical foundations of dispersion the-
ory for nonlinear optics [20–23, 25, 180]. These permit a connection between
K-K relations and the establishment of sum rules for the real and imaginary
parts of susceptibility. The instruments of complex analysis permit the defi-
nition of the necessary and sufficient conditions for the applicability of K-K
relations, which require that the nonlinear susceptibility function descriptive
of the nonlinear phenomena under examination is holomorphic in the upper
complex plane of the relevant frequency variable. The asymptotic behavior of
nonlinear susceptibility determines the number of independent pairs of K-K
relations that hold simultaneously. Combining K-K relations and the knowl-
edge of the asymptotic behavior of nonlinear susceptibility, it is possible to
derive, along the same lines as in the linear case, sum rules for nonlinear
optics. Sum rules for nonlinear optics can also be obtained using approaches
relying heavily on statistical physics methods [181]. A comprehensive analysis
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of Kramers-Kronig relations and sum rules in nonlinear optics can be found
in [34].

We emphasize that in nonlinear optics, similarly to the linear case, when
both the real and imaginary parts of holomorphic susceptibilities can be ex-
perimentally measured as independent quantities, K-K relations provide the
means to estimate the self-consistency of measured data. Furthermore, gen-
eralized K-K relations as well as multiply subtractive K-K relations provide
also in such a case the means to judge the success of measured data.

In this chapter, we study the holomorphic properties of general nonlinear
susceptibility functions, and we deduce general criteria for establishing the
cases in which K-K relations connect the real and imaginary parts of non-
linear susceptibility under consideration. We will also consider the analysis
of the nonlinear integral properties of pump-and-probe susceptibility as an
experimentally and theoretically relevant example.

6.2 Kramers-Kronig Relations in Nonlinear Optics:
Independent Variables

The nonlinear Green function obeys causality for each of its time variables,
as shown in (5.4). Therefore, assuming as usual that suitable integrability
conditions are obeyed, we can apply the Titchmarsch theorem [2] separately
to each variable and deduce that the nonlinear susceptibility function (5.7)
is holomorphic in the upper complex plane of each variable ωi, 1 ≤ i ≤ n. If
we consider the first argument ω1 of nonlinear susceptibility function (5.7),
the following relation holds
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∞∫
−∞
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(n)
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l=1
ω′
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1, . . . , ω
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n
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)
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(6.1)
Repeating the same procedure for all remaining (n − 1) frequency variables
and applying the symmetry relation (5.10), we obtain
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and
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which for nonlinear optics are the equivalent of the conventional K-K rela-
tions described for the linear case in Sect. 4.3. It is clear that these relations,
in spite of their theoretical significance, are not interesting from an experi-
mental point of view, since their verification as well as their utilization for
optical data retrieving requires the possibility of independently changing n
laser beams. Moreover, most of the physically relevant nonlinear phenomena
are described by nonlinear susceptibilities where all or part of the frequency
variables are mutually dependent. This occurs in any case when the number
of the frequency components of the incoming radiation is less than the order
of the nonlinear process under examination, as occurs in the pump-and-probe
case (5.19). Dispersion relations (6.2) and (6.3) are then a mere mathematical
extension of linear K-K relations. We may, therefore, understand that a more
flexible theory, where the nonlinearity of the interaction is fully acknowl-
edged, is needed in order to provide effectively relevant dispersion relations
for nonlinear optical phenomena.

6.3 Scandolo’s Theorem and Kramers-Kronig Relations
in Nonlinear Optics

In nonlinear optics, a relevant dispersion relation is a line integral in the space
of frequency variables, which entails the choice of a one-dimensional space
embedded in an n-dimensional space, if we consider an nth-order nonlinear
process. This corresponds to realistic experimental setting where only the
frequency of one of the monochromatic beams described in (5.12) is changed.
Since we have frequency mixing in nonlinear optics, changing one frequency
of the incoming radiation will change none, one, or more than one arguments
of the nonlinear susceptibility function considered, depending on how many
photons of the tunable incoming radiation it takes into account. The choice
of the parametrization then selects different susceptibilities and so refers to
different nonlinear optical processes. Each component j of the straight line
in R

n can be parametrized as follows:

ωj(s) = vjs + wj , 1 ≤ j ≤ n, (6.4)

where the parameter s ∈ (−∞,∞), the vector v of its coefficients describes
the direction of the straight line, and the vector w determines ω(0).
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We refer to the previously presented pump-and-probe susceptibility (5.19)
to provide well-suited examples of the parametrizations (6.4). In this case,
while the pump frequency ω2 is fixed, the probe frequency ω1 can be tuned.
The correct parametrization of the straight line for the first term in expression
(5.19) is then v = (1, 0, 0) and w = (0, ω2,−ω2). The correct parametrization
of the second term in (5.19) is v = (1, 1,−1) and w = (0, 0, 0), because all
arguments change simultaneously but one has a sign opposite to the other
two.

Scandolo’s theorem [23] permits the determination in very general terms of
the holomorphic properties of the nonlinear susceptibility tensor with respect
to the varying parameter s. Substituting expression (6.4) in definition (5.7),
we obtain

χ
(n)
ij1...jn

⎡⎣ n∑
j=1

(vjs + wj) ; v1s + w1, . . . , vns + wn
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=
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−∞
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⎛⎝is
n∑
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vjtj + i
n∑
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wjtj

⎞⎠dt1 . . .dtn.

(6.5)

When dealing with the s-parametrized form of nonlinear susceptibility, from
now on we will use the simpler notation

χ
(n)
ij1...jn

(s) = χ
(n)
ij1...jn

⎡⎣ n∑
j=1

(vjs + wj) ; v1s + w1, . . . , vns + wn

⎤⎦ . (6.6)

We compute the Fourier inverse transform with respect to s of expression
(6.5) and obtain the following parametrized one-variable nonlinear Green
function:

G
(n)
ij1...jn

(τ) =
1
2π

∞∫
−∞

χ
(n)
ij1...jn

(s) e−isτds. (6.7)

Under the condition
vj ≥ 0, 1 ≤ j ≤ n, (6.8)

we deduce that, given that the nonlinear Green function obeys causality for
each time variable, as remarked in condition (5.4), expression (6.7) obeys the
following condition with respect to the variable τ :

G
(n)
ij1...jn

(τ) = 0, τ ≤ 0. (6.9)

With (6.9) and making the usual assumption that the function belongs to
the space L2, we can take advantage of Titchmarsch theorem [2] and deduce
that the nonlinear susceptibility (6.6) is holomorphic in the upper complex
plane of the complex variable s. Hence, the Hilbert transforms connect the
real and imaginary parts of the nonlinear susceptibility (6.6):
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These general relations extend the results obtained in the 1960s [170–172] and
1970s [173,174] for specific nonlinear phenomena, and the general conclusions
drawn in the 1980s for specific models [20–22]. The condition (6.8) on the
sign of the directional vectors of the straight line in R

n implies that only one
particular class of nonlinear susceptibilities possesses the holomorphic prop-
erties required to obey dispersion relations (6.10) and (6.11). Hence, causality
is not a sufficient condition for the existence of K-K relations between the
real and imaginary parts of a general nonlinear susceptibility function. The
principle of causality [3] of the response function is reflected mathematically
in the validity of the K-K relations for the nonlinear susceptibility in the form
presented in (6.2) and (6.3).

We observe that the Scandolo theorem implies that the two terms of the
pump-and-probe susceptibility (5.19) have fundamentally different proper-
ties.

The first term is holomorphic in the upper complex ω1-plane, so that by
considering the parametrization v = (1, 0, 0) and w = (0, ω2,−ω2) for the
line integral, K-K relations can be established between the real and imaginary
parts:
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(6.13)
where we have considered the general tensorial component and have presented
the usual semi-infinite integration by taking advantage of the relation (5.8).
Similar dispersion relations can be established for the dominant term of the
nonlinear change in the index of refraction presented in expression (5.20).
Figure 6.1 shows the results of a study [27] where the K-K relations for the
nonlinear change in the index of refraction were used heuristically before they
had been rigorously derived.

The second term of (5.19) is not holomorphic in the upper complex ω1-
plane. The optical data related to the degenerate susceptibility cannot be
inverted using K-K relations [71].
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Fig. 6.1. Application of K-K relations for the inversion of nonlinear optical data in
pump-and-probe experiments: (a) absorption at the probe frequency for different
intensities of the pump laser; (b) dots: experimental data showing the real part of
the nonlinear refractive index; solid lines: corresponding curves computed via K-K
relations from the absorption data in (a). Reproduced from [27]

Since the first term in the conventional experimental setting is larger
than the second term by orders of magnitude because of condition (5.18),
it is reasonable to expect that the full pump-and-probe susceptibility (5.19)
obeys K-K relations with good approximation.

For susceptibility functions that do not obey the conditions of the Scan-
dolo theorem, i.e. if at least one component of the vector v in the parametriza-
tion (6.4) is negative, it is not possible to invert the optical data through K-K
relations. Considering that these functions have poles in the upper complex
s-plane, Cauchy’s integral theorem [39] permits us to write the following re-
lation:
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where the sum in the second term on the right hand-side member is over the
residua (Res) of the susceptibility in the poles ps in the upper complex s-
plane. Property (5.9) implies that all the poles are symmetrical with respect
to the imaginary axis of the variable s. Therefore, for these susceptibility
functions, data inversion cannot be achieved unless, unrealistically, informa-
tion on all the poles is provided. A recent study of a simplified oscillator
model [129] shows that the knowledge of the poles in the upper complex
ω1-plane, resulting from the contribution to the total pump-and-probe sus-
ceptibility relative to the dynamical Kerr effect, permits us to write explic-
itly a set of dispersion relations between the real and the imaginary parts,
which differ from the usual K-K relations by a term that is proportional to
the intensity of the probe beam. Generally, the inversion of optical data for
this class of susceptibility functions can be performed with a high degree
of accuracy using algorithms based on the maximum entropy method [182],
which in recent studies has shown its potentially great impact on applica-
tions [15,71,183–186]. We will deal with the maximum entropy method later
in this book.

6.4 Kramers-Kronig Analysis
of the Pump-and-Probe System

We consider the response of a physical system to a pump-and-probe experi-
ment in the limit of very low intensity of the probe laser. We then consider
the contribution to nonlinear polarization corresponding to the first term in
expression (5.19). We can deduce the asymptotic behavior of this function,
which is holomorphic in the upper complex ω1-plane [23–25, 34], so that the
following relation holds for large values of ω1:

χ
(3)
ij1j2j3

(ω1; ω1, ω2,−ω2) ≈ cij1j2j3(ω2)
ω4

1
. (6.15)

As with the linear case, the leading asymptotic term of susceptibility for large
values of ω1 is real. The numerical evaluation of the ω2-dependent tensor ap-
pearing as the coefficient of the leading asymptotic order has been performed
in the case of the hydrogen atom [24]. From asymptotic equivalence (6.15),
we deduce that the second moment of the nonlinear susceptibility considered
here decreases asymptotically as ω−2

1 and that it is holomorphic in the upper
complex ω1-plane because it is a product of two holomorphic functions. We
then deduce that the following pair of independent K-K relations holds [23]:
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This pair of K-K relations is peculiar to the nonlinear response at the probe
frequency because they are independent of the previously obtained disper-
sion relations (6.12) and (6.13). This in turn implies that the experimental or
model-based data of the susceptibility considered have to obey both disper-
sion relations pairs in order to be self-consistent. We emphasize that similar
dispersion relations also hold for the dominant part of the nonlinear contri-
bution to the index of refraction presented in expression (5.20).

By applying the superconvergence theorem [9] presented in the previous
chapter to K-K relations (6.12)–(6.17) and taking into account asymptotic
behavior (6.15), it is possible to obtain sum rules for the moments of the real
and imaginary parts of the susceptibility considered [23]:
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These sum rules are a priori constraints that every set of experimental or
model generated data has to obey simultaneously.

Sum rule (6.18) implies that the average of the real part of the nonlinear
susceptibility is zero, as for the real part of linear susceptibility.

Sum rule (6.19), which applies only in the nonlinear case, given that the
second moment of the real part of the linear susceptibility does not converge,
gives an additional constraint on the negative and positive contributions in
the real part of the nonlinear susceptibility.

Sum rule (6.20) implies that the imaginary part of the nonlinear sus-
ceptibility at the probe frequency has to be negative in some parts of the
spectrum, so that nonlinear stimulated emissions compensate for nonlinear
stimulated absorptions such as two-photon and stimulated Raman. In 1997,
Cataliotti et al. [30] experimentally verified this sum rule on cold cesium
atoms (T < 10 µK). When the pump laser is opportunely tuned, there is a



6.4 Kramers-Kronig Analysis of the Pump-and-Probe System 79

Fig. 6.2. Bottom graph: linear absorption; Middle graph: total absorption with
pump laser switched on in EIT configuration; Top graph: nonlinear absorption.
Reproduced from [30]

decrease in the main resonance absorption peak from quantum interference
effects, as prescribed by electromagnetically induced transparency (EIT) the-
ory [187], while new peaks of absorption outside the linear resonance are
formed, as can be seen in Fig. 6.2. Those peaks compensate for the reduced
absorption resulting from the EIT effect, so that the integral of the nonlinear
absorption is zero with good experimental precision.

Sum rule (6.21) is peculiar to nonlinear susceptibility and links the ab-
sorption spectrum to a function only of the pump laser frequency and the
specific material thermodynamic equilibrium density matrix.

Experimental analysis of the second and fourth sum rules would be of
particular relevance because these constraints hold only in the nonlinear case.
Nevertheless, we can expect that the actual verification of the sum rules may
not be easily achievable because, in general, sum rules are integral relations
whose validification requires data over very large spectral ranges [12,75,76].

6.4.1 Generalization of Kramers-Kronig Relations and Sum Rules

Along the lines of that presented in [78] for linear optics and in [188] for non-
linear phenomena for the specific case of harmonic-generation susceptibility,
we propose an extension of the previously derived K-K relations (6.12)–(6.17)
and sum rules (6.18)–(6.21) for the holomorphic contribution to pump-and-
probe susceptibility by considering higher powers of the susceptibility. The
kth (k ≥ 1) power of the pump-and-probe susceptibility is holomorphic in
the upper complex ω-plane, since it is the product of functions that obey this
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property. From (6.15), we also find that for large values of ω,

[
χ

(3)
ij1j2j3

(ω1; ω1, ω2,−ω2)
]k

≈ [cij1j2j3(ω2)]
k

ω4k
1

. (6.22)

We thus derive the following set of newly established general K-K relations
that hold simultaneously:
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where 0 ≤ α ≤ 2k − 1. From the generalized K-K relations (6.23) and (6.24),
using the superconvergence theorem, and considering asymptotic behavior
(6.22), it is possible to derive the following set of new generalized sum rules:
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These sum rules reduce to those presented in (6.18)–(6.21) if we set k = 1.
From (6.21) and (6.27), it is possible to derive a consistency relation between
the nonvanishing sum rule for the kth power of the pump-and-probe sus-
ceptibility and the kth power of the nonvanishing sum rule for conventional
susceptibility:
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The results presented in this subsection may constitute relevant tools for
the investigation of pump-and-probe experimental data. It may be easier
to obtain convergence in integral properties if we consider higher powers of
the susceptibility, thanks to the faster asymptotic decrease realized. A fast
asymptotic decrease eases the problems related to the unavoidable spectral
range finiteness.



7 Kramers-Kronig Relations and Sum Rules
for Harmonic-Generation Processes

7.1 Introductory Remarks

The theoretical and experimental investigation of harmonic-generation pro-
cesses is one of the most important branches of nonlinear optics [17–19]. Only
recently has a complete formulation of general K-K relations and sum rules
for nth-order harmonic-generation susceptibility in continuous wave approx-
imation been obtained [31,77,188,189].

A major problem in the effective verification of experimental data on
the general properties of the physical quantities descriptive of harmonic-
generation processes is their integral formulation, which, in principle, requires
data covering the whole of the infinite positive range. Moreover, even now
there are relatively few studies that report on independent measurements of
the real and imaginary parts of harmonic-generation susceptibilities [28,166]
and on the validity of K-K relations in nonlinear experimental data inver-
sion [29]. Most recently, a very detailed analysis of the integral properties
of optical harmonic-generation of experimental data on polymers has been
presented [32,34].

In this chapter, we review the most relevant theoretical achievements in
the determination of the general properties of harmonic-generation suscep-
tibility. We define the nth-order harmonic-generation susceptibility tensor
and obtain its analytical properties by taking advantage of the Scandolo
theorem [23]. We then derive its asymptotic behavior for large values of fre-
quency. We then combine all the information gathered, and we derive a set
of independent K-K relations and sum rules for the moments of harmonic-
generation susceptibility and of its powers. We also present expressions for
generalized MSKK relations for the moments of harmonic-generation suscep-
tibilities. The MSKK relations can be useful in data analysis since they relax
the intrinsic limitations in the K-K approach related to the finiteness of the
measured spectral range.

7.2 Application of the Scandolo Theorem
to Harmonic-Generation Susceptibility

We focus on a typical experimental setup for harmonic-generation processes,
where the incident radiation is given by a strictly monochromatic and linearly
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polarized field, so that we can express E (t) as follows:

Ej (t) = Ej exp(−iωt) + c.c. (7.1)

Since we are interested in studying the nth-order harmonic-generation pro-
cesses, we seek the ωΣ = nω frequency component of the induced nonlinear
polarization P (n) (t) introduced in (5.14)–(5.16). Considering the term in
(5.14), where the product of only the positive frequency components ω is
considered, we obtain

P
(n)
i (nω) = χ

(n)
ij1,...,jn

(nω; ω, . . . , ω) Ej1 . . . Ejn
. (7.2)

We wish to emphasize that contributions to the nω frequency component of
nonlinear polarization also come from higher nonlinear orders n+2q, where in
(5.14) we select in the argument of the susceptibility function, the positive ω
frequency component (n+q) times and the negative −ω frequency component
q times. We will ignore these higher order contributions and concentrate on
the nth-order nonlinear process.

When the frequency of the incoming radiation varies, all the arguments
of harmonic-generation susceptibility in (7.2) change coherently, so that the
correct straight line parametrization in R

n of the arguments of the suscep-
tibility proposed in (6.4) is v = (1, . . . , 1) and w = (0, . . . , 0). Since all
the components of the vector v are positive and hence obey condition (6.8),
Scandolo’s theorem [23] permits us to deduce that the harmonic-generation
susceptibility is holomorphic in the upper complex ω-plane.

We also underline that the nth-order harmonic-generation susceptibility
obeys the following symmetry relation, which derives from the general case
presented in (5.9):

χ
(n)
ij1...jn

(−nω; −ω, . . . ,−ω) =
[
χ

(n)
ij1...jn

(nω; ω, . . . , ω)
]∗

. (7.3)

Such a relation implies that the real and imaginary parts are, respectively,
even and odd with respect to the exchange of the sign of ω.

7.3 Asymptotic Behavior
of Harmonic-Generation Susceptibility

As has been thoroughly discussed in the previous chapter in connection with
the general nonlinear case, the number of independent K-K relations and
sum rules that simultaneously hold for harmonic-generation susceptibility
and its moments is determined by the asymptotic behavior of the suscepti-
bility function. Therefore, the establishment of the complete general integral
properties for the susceptibility considered requires microscopic treatment of
the process of harmonic-generation, which we will approach using the con-
ventional nth-order perturbation theory presented in the previous chapters,
summarized by the concatenated system (2.33). Nevertheless, we have found
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that, while in the definition of the nth-order nonlinear polarization and sus-
ceptibility functions, the conventional length gauge for the light–matter in-
teraction Hamiltonian presented in expression (2.24) is more efficient, the
determination of the asymptotic behavior of harmonic-generation suscepti-
bility is much more straightforward if we adopt the physically equivalent –
and theoretically more elegant [38] – velocity gauge formulation presented in
expression (2.21). Following the same procedure adopted in the derivation
of expressions (5.21)–(5.26) in the length gauge, we find that, equivalently,
nth-order nonlinear polarization P (n)(t) can be expressed as follows:

P
(n)
i (t) =

∞∫
−∞

J
(n)
ij1...jn

(t1, . . . , tn) Aj1 (t − t1) . . . Ajn
(t − τn) dt1 . . .dtn,

(7.4)
where the velocity gauge nth-order nonlinear Green function is

J
(n)
ij1...jn

(t1, , . . . , tn) = − en+1

V (−i�mc)n θ (t1) . . . θ (tn − tn−1)

× Tr

{[
N∑

α=1

pα
jn

(−tn), . . . ,

[
N∑

α=1

pα
j1 (−t1),

N∑
α=1

rα
i

]
. . .

]
ρ (0)

}
.

(7.5)

We point out that the quadratic term of the vector potential A(t) in the
interaction Hamiltonian (2.21) is not present in the definition of the Green
function (7.5). The reason for this absence is that this term does not in-
volve operators and so, being a numerical constant, its contribution is can-
celled out in an iterative commutator structure as in (7.5), derived from the
concatenated system of differential (2.33), with the definition (2.21) for the
interaction Hamiltonian.

We observe that by applying the Fourier transform to both members of
(2.22), we obtain

A(ω) =
c

iω
E(ω). (7.6)

If we compute the Fourier transform of expression (7.4), given that the in-
coming radiation is of the form (7.1), and take into account the result (7.6),
we obtain in the velocity gauge,

P
(n)
i (nω) = Υ

(n)
ij1,...,jn

(nω; ω, . . . , ω)
( c

iω

)n

Ej1 . . . Ejk
, (7.7)

where

Υ
(n)
ij1,...,jn

(nω; ω, . . . , ω) =

∞∫
−∞

J
(n)
ij1...jn

(τ1, . . . , τn) exp

[
iω

n∑
l=1

tl

]
dt1 . . .dtn.

(7.8)
Since the two gauges are physically equivalent, we deduce that the following
equality holds:
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χ
(n)
ij1,...,jn

(nω; ω, . . . , ω) = Υ
(n)
ij1,...,jn

(nω; ω, . . . , ω)
( c

iω

)n

. (7.9)

Therefore, the nth-order harmonic-generation susceptibility is

χ
(n)
ij1,...,jn

(nω, ω, . . . , ω) = − en+1

V (�m)n
ωn

∞∫
−∞

θ (t1) . . . θ (tn − tn−1)

× Tr

{[
N∑

α=1

pα
jn

(−tn), . . . ,

[
N∑

α=1

pα
j1 (−t1),

N∑
α=1

rα
i

]
. . .

]
ρ (0)

}

× exp

[
iω

n∑
l=1

tl

]
dt1 . . .dtn.

(7.10)

In addition, the linear susceptibility presented in expression (3.41) is included
in the above expression when we set n = 1. In the integral in the right-hand
member of expression (7.10), we apply the following variable change:

tj =
j∑

i=1

τi, 1 ≤ j ≤ n, (7.11)

and obtain for the general harmonic-generation susceptibility

χ
(n)
ij1,...,jn

(nω; ω, . . . , ω) = − en+1

V (�m)n
ωn

∞∫
−∞

θ (τ1) . . . θ (τn)

× Tr

{[
N∑

α=1

pα
jn

(−τn − . . . − τ1), . . . ,

[
N∑

α=1

pα
j1 (−τ1),

N∑
α=1

rα
i

]
. . .

]
ρ (0)

}

× exp

⎡⎣iω
n∑

j=1

(n + 1 − j) τj

⎤⎦dτ1 . . .dτn.

(7.12)

After a cumbersome calculation [34], we obtain the result that for large ω,
the nth-order harmonic-generation susceptibility asymptotically decreases as
ω−2n−2:

χ
(n)
ij1,...,jn

(nω; ω, . . . , ω) =
(−1)n

n2n!
en+1

mn+1

N

V
Tr

{
∂n+1V (rα)

∂rα
jn

. . . ∂rα
ji

∂rα
i

ρ (0)

}

× 1
ω2n+2 + o

(
ω−2n−2) .

(7.13)

We observe that the fundamental quantum constant � does not appear in
formula (7.13), thus suggesting that a detailed quantum physics treatment is
not essential in locating this property. The quantum aspect of the expression
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we have obtained appears only in the definition of the expectation value of
the derivatives of one-particle potential energy on the equilibrium density
matrix of the system. We observe that the many-particle components of the
Hamiltonian are not directly represented in this result, apart from playing
a relevant role in the definition of the ground state of the system. It is pos-
sible to detect a close correspondence between the general properties of a
rigorously defined quantum harmonic-generation susceptibility and those of
the harmonic-generation susceptibility obtained from a simple classical an-
harmonic oscillator model [34,77].

7.4 General Kramers-Kronig Relations and Sum Rules
for Harmonic-Generation Susceptibility

The holomorphic properties and the asymptotic behavior of nth-order
harmonic-generation susceptibility allow us to write the following set of inde-
pendent K-K dispersion relations for the moments of the real and imaginary
parts of the susceptibility considered for nonconducting materials [77, 189]:

ω2αRe
{

χ
(n)
ij1...jn

(nω; ω, . . . , ω)
}

=
2
π

P

∞∫
0

ω′2α+1Im
{

χ
(n)
ij1...jn

(nω′; ω′, . . . , ω′)
}

ω′2 − ω2 dω′,
(7.14)

ω2α−1Im
{

χ
(n)
ij1...jn

(nω; ω, . . . , ω)
}

= −2ω

π
P

∞∫
0

ω′2αRe
{

χ
(n)
ij1...jn

(nω′; ω′, . . . , ω′)
}

ω′2 − ω2 dω′,
(7.15)

with 0 ≤ α ≤ n, where α is such that the αth moment of the harmonic suscep-
tibility under consideration decreases for large values of the frequency at least
as fast as ω−2. We observe that the number of independent K-K relations
grows with the order of the process of harmonic-generation in question.

Moreover, when a function is holomorphic in a given domain and its pos-
itive integral powers share the same property, we find that the more general
K-K relations stated below hold for the positive integral kth powers of the
susceptibility under examination [188]:

ω2αRe
{[

χ
(n)
ij1...jn

(nω; ω, . . . , ω)
]k
}

=
2
π

P

∞∫
0

ω′2α+1Im
{[

χ
(n)
ij1...jn

(nω′; ω′, . . . , ω′)
]k
}

ω′2 − ω2 dω′,

(7.16)
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ω2α−1Im
{[

χ
(n)
ij1...jn

(nω; ω, . . . , ω)
]}

= −2ω

π
P

∞∫
0

ω′2αRe
{[

χ
(n)
ij1...jn

(nω′; ω′, . . . , ω′)
]k
}

ω′2 − ω2 dω′,
(7.17)

with 0 ≤ α ≤ k(n+1)−1. The dispersion relations presented in (7.14)–(7.17)
extend the results to all orders previously obtained for the second and third
orders in the past decades [170–174, 180, 190]. Comparing the asymptotic
behavior obtained from expression (7.13) with those obtained by applying
the superconvergence theorem [9,74] to the general K-K relations (7.16) and
(7.17), we immediately obtain the following set of sum rules:

∞∫
0

ω′2αRe
{[

χ
(n)
ij1...jn

(nω′, ω′, . . . , ω′)
]k
}

dω′ = 0, 0 ≤ α ≤ k(n + 1) − 1,

(7.18)
∞∫
0

ω′2α+1Im
{[

χ
(n)
ij1...jn

(nω′, ω′, . . . , ω′)
]k
}

dω′ = 0, 0 ≤ α ≤ k(n + 1) − 2,

(7.19)
∞∫
0

ω′2k(n+1)−1Im
{[

χ
(n)
ij1...jn

(nω′, ω′, . . . , ω′)
]k
}

dω′

=
π

2

[
(−1)n+1

n2n!
en+1

mn+1

N

V
Tr

{
∂n+1V (rα)

∂rα
jn

. . . ∂rα
ji

∂rα
i

ρ (0)

}]k

.

(7.20)

All the moments of the kth power of nth-order harmonic-generation suscep-
tibility vanish except that of order 2k(n + 1) − 1 of the imaginary part. In
the most fundamental case of k = 1, the nonvanishing sum rule creates a
conceptual bridge between a measure of the (n + 1)th-order nonlinearity of
the potential energy of the system and the measurements of the imaginary
part of the susceptibility under examination throughout the spectrum, thus
relating structural and optical properties of the material under consideration,
i.e. the static and dynamic properties of the electronic system.

We can also observe that from the nonvanishing sum rule in (7.20), it
is possible to obtain a simple consistency relation between the nonvanishing
sum rule for the kth power of harmonic-generation susceptibility and the kth
power of the nonvanishing sum rule for conventional susceptibility, where we
select k = 1:

− 2
π

∞∫
0

ω′2k(n+1)−1Im
{[

χ
(n)
ij1...jn

(nω′, ω′, . . . , ω′)
]k
}

dω′

=

⎡⎣− 2
π

∞∫
0

ω′2n+1Im
{

χ
(n)
ij1...jn

(nω′, ω′, . . . , ω′)
}

dω′

⎤⎦k

.

(7.21)
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The constraints presented here are, in principle, universal, since they essen-
tially derive from the principle of causality in the response of the matter to
external radiation, and so they are expected to hold for any material. They
provide fundamental tests of self-consistency that any experimental or model
generated data have to obey. We point out that verification of K-K relations
and sum rules constitutes an unavoidable benchmark for any investigation
into the nonlinear response of matter to radiation over a wide spectral range.

We wish to underline that, similarly to the linear case, the integral prop-
erties obtained by adopting a full ab initio quantum mechanical approach
show very close correspondence with the results obtained in [77] with a sim-
ple nonlinear oscillator model, provided we consider the expectation value of
the derivatives of the potential energy as the quantum analogue of the same
derivatives of the classical potential energy evaluated at the equilibrium posi-
tion. The main reason for this correspondence is that the basic ingredients of
the general integral relations are the analytical properties and asymptotic be-
havior of harmonic-generation susceptibility. These properties do not depend
on the microscopic treatment of the interaction between light and matter
but are connected to the validity of the causality principle in physical sys-
tems [2,3,34,35,38]. Similar results have been obtained for the susceptibility
function relevant to pump-and-probe processes [34,129].

7.4.1 General Integral Properties of Nonlinear Conductors

Conducting materials are characterized by the presence of nonvanishing
static conductance, which changes the integral properties of their nth-order
harmonic-generation susceptibilities, as in linear optics [68–70,78]. In order to
avoid an excessively cumbersome study, we will not present the K-K relations
for the higher powers of the nth-order harmonic susceptibility of metals.

Remembering that susceptibility can be expressed in terms of conductivity
in every order of nonlinearity,

χ
(n)
ij1...jn

(nω; ω, . . . , ω) = i
σ

(n)
ij1...jn

(nω; ω, . . . , ω)
nω

, (7.22)

in the case of conductors, by definition, we can express harmonic-generation
susceptibility in terms of the nonvanishing real tensor of nonlinear static
conductance of order n for frequencies close to zero:

χ
(n)
ij1...jn

(nω; ω, . . . , ω)
∣∣∣
ω≈0

≈ i
σ

(n)
ij1...jn

(0)
nω

. (7.23)

The presence of this pole at the origin of the ω-axis changes the K-K relation
(7.15) for α = 0:
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Im
{

χ
(n)
ij1...jn

(nω; ω, . . . , ω)
}

− σ
(n)
ij1...jn

(0)
nω

= −2ω

π
P

∞∫
0

Re
{

χ
(n)
ij1...jn

(nω′; ω′, . . . , ω′)
}

ω′2 − ω2 dω′.

(7.24)

By applying the superconvergence theorem to the dispersion relation (7.24),
we derive the related sum rule:

∞∫
0

Re
{

χ
(n)
ij1...jn

(nω′; ω′, . . . , ω′)
}

dω′ = − π

2n
σ

(n)
ij1...jn

(0) . (7.25)

Equations (7.24) and (7.25) extend the results for linear optics to the non-
linear case, previously presented in Sect. 4.3.1 and in (4.19), which have been
carefully verified with experimental data [68–70,78].

All the K-K relations (7.14) and (7.15) and related sum rules (7.18)–
(7.20) that we obtain by setting 1 ≤ α ≤ n remain unchanged for conductors
because the higher moments of harmonic-generation susceptibility do not
have a pole at the origin.

We propose that the established general integral properties for harmonic-
generation processes on conductors should be experimentally verified.

7.5 Subtractive Kramers-Kronig Relations
for Harmonic-Generation Susceptibility

The characteristic integral structure of K-K relations requires knowledge of
the spectrum in a semi-infinite angular frequency range. Unfortunately, in
practical spectroscopy, only a finite spectral range can be measured. More-
over, technical difficulties in gathering information about nonlinear optical
properties over a sufficiently wide spectral range make even the application
of approximate K-K relations problematic. The extrapolations in K-K anal-
ysis, such as estimation of data beyond the measured spectral range, can
be a serious source of errors [13, 71]. Recently, King [191] presented an ef-
ficient numerical approach to the evaluation of K-K relations. Nevertheless,
the problem of data fitting is always present in regions outside the measured
range.

In the context of linear optics, SSKK [109] and MSKK [110] relations have
been proposed in order to relax the limitations caused by finite-range data,
as described in Sect. 4.7.2.

Subtractive K-K relations have been proposed only recently in the context
of nonlinear optics and especially for harmonic-generation susceptibility [31].
The idea behind the subtractive Kramers-Kronig technique is that inversion
of the real (imaginary) part of nth-order harmonic-generation susceptibility
can be greatly improved if we have one or more anchor points, i.e. a single
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or multiple measurement of the imaginary (real) part for a set of frequencies.
For simplicity, in this section, we use the following simplified notation:

χ
(n)
ij1...jn

(nω; ω, . . . , ω) = χ
(n)
ij1...jn

(nω). (7.26)

With the aid of mathematical induction (see Appendix A in [110]), we can
derive the multiply subtractive K-K relations for real and imaginary parts as
follows:

ω2αRe
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ij1...jn
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=
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+

[
(ω2 − ω2
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(7.27)
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(7.28)



92 7 Kramers-Kronig Relations and Sum Rules

with 0 ≤ α ≤ n; here ωj with j = 1, · · · , Q denote the anchor points. Note
that the anchor points in (7.27) and (7.28) need not be the same. We observe
that the integrands of Eqs. (7.27) and (7.28) show a remarkably faster asymp-
totic decrease as a function of angular frequency, than the conventional K-K
relations given by (7.14) and (7.15). In the case of Q-times subtracted K-K
relations, the integrands asymptotically decrease as ω2α−(2n+2+2Q), whereas
in the case of conventional K-K relations, the decrease is proportional to
ω2α−(2n+2). Hence, it can be expected that the limitations related to the
presence of an experimentally unavoidable finite frequency range are relaxed,
and the precision of the integral inversions is then enhanced.

The additional information for optical data inversion derived from the
knowledge of anchor points is useful mostly when they are located well out-
side the main spectral features of the range considered. The first reason is
that if we already have direct access to information on the main features
of the spectrum, optical data inversion may be unnecessary. Moreover, even
small relative errors in the experimental value of anchor points located in
the main features of the spectrum would propagate in (7.27) or (7.28) over
all the spectral region under examination so that the relative error in the
out-of-resonance portions would be considerable, thus causing large error in
the estimation of the complex phase. We note that according to Palmer et
al. [110], under simplifying assumptions for the spectral shape, the choice of
the anchor points is optimal when they are near the zeros of the Qth-order
Chebyshev polynomial of the first kind.

In linear optical spectroscopy it is usually easy to get information on op-
tical constants at various anchor points. However, in the field of nonlinear
optics, it may be difficult to obtain the real and imaginary parts of nonlin-
ear susceptibility at various anchor points. We emphasize that even a single
anchor point reduces the errors caused by a finite spectral range in data inver-
sion of nonlinear optical data, as shown in the next chapter. For one anchor
point, say, at frequency ω1, we obtain the following singly subtractive K-K
relations from (7.27) and (7.28):
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where 0 ≤ α ≤ n.



8 Kramers-Kronig Relations and Sum Rules
for Data Analysis: Examples

8.1 Introductory Remarks

Only in a few investigations have independent measurements of the real
and imaginary parts of harmonic-generation susceptibilities been performed
across a relatively wide range [28, 29, 143, 166]. Consequently, verification of
the coherence of measured data by checking the self-consistency of Kramers-
Kronig relations is still of very limited use [29]. Until very recently, no studies
at all have dealt with the experimental verification of sum rules.

In this chapter, we report the major results of the first analyses of
harmonic-generation data where the full potential of the generalized K-K
relations and sum rules for harmonic-generation susceptibilities as well as
of the subtractive K-K relations presented in the previous chapter is ex-
ploited [31,32,34].

8.2 Applications of Kramers-Kronig Relations
for Data Inversion

The calculations presented here are based on two published sets of experi-
mental data on third-harmonic-generation in polymers, where the real and
imaginary parts of susceptibility were independently measured. The first data
set refers to measurements taken on polisylane [29] and spans a frequency
range of 0.4–2.5 eV. The second data set refers to measurements taken on
polythiophene [166] and spans a frequency range of 0.5–2.0 eV.

We consider the worst scenario, namely, data from a limited spectral range
and with no knowledge of anchor points [31,109,110]. We do not assume any
asymptotic behavior outside the data range but use only the experimental
data, since extrapolation is somewhat arbitrary and in K-K analysis can
be quite problematic [13, 15]. There is no information about the tensorial
components of harmonic-generation susceptibility that have been measured,
so that we adopt a simplified scalar notation. We also denote χ(3)(3ω; ω, ω, ω)
by χ(3)(3ω) to simplify the notation.
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Fig. 8.1. Efficacy of K-K relations in retrieving (a) ω2αRe{χ(3)(3ω)} and
(b) ω2α+1Im{χ(3)(3ω)} on polysilane. Reproduced from [32]

8.2.1 Kramers-Kronig Inversion
of Harmonic-Generation Susceptibility

The self-consistency of the red and imagenary parts of the two data sets can
be checked by observing the efficacy of the K-K relations in inverting the
optical data for the functions ω2α[χ(3)(3ω)]k, with k = 1, 2. We report the
results obtained by applying truncated K-K relations and use a self-consistent
procedure [32,34].

In the paper by Kishida et al. [29], a check of the validity of the K-K
relations was performed by comparing the measured and retrieved χ(3)(3ω).
Consideration of the moments of susceptibility is not a mere add-on to the
work by Kishida et al. [29]; it represents a fundamental conceptual improve-
ment. These additional independent relations are peculiar to nonlinear phe-
nomena and provide independent double-checks of the experimental data that
must be obeyed in addition to conventional K-K relations. In Fig. 8.1a,b, we
present the results of the K-K inversion for, respectively, the real and imagi-
nary parts of the third-harmonic-generation susceptibility data on polysilane.
We observe that in both cases the retrieved data obtained with the choices
α = 0, 1 are almost indistinguishable from the experimental data, while for
α = 2 and α = 3, the agreement is quite poor in the lower part of the spec-
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Fig. 8.2. Efficacy of K-K relations in retrieving (a) ω2αRe{χ(3)(3ω)} and
(b) ω2α+1Im{χ(3)(3ω)} on polytiophene. Reproduced from [32]

trum. The error induced by the presence of the cutoff in the high-frequency
range becomes more critical in the data inversion for larger α, since a slower
asymptotic decrease is realized. It is reasonable to expect that by inverting
the data with the additional information given by anchor points located in
the lower part of the data range, these divergences can be cured. The theory
suggests that for α = 4, no convergence should occur. Actually, we observe
that, while the main features around 1.1 eV are represented, there is no con-
vergence at all for the lower frequencies; the absence of a clear transition in
retrieving performance between the α = 3 and α = 4 cases is due to the
finiteness of the data range.

In Figs. 8.2a and 8.2b, we show a comparison between the retrieved and ex-
perimental data of third-harmonic-generation susceptibility on polythiophene
for real and imaginary parts, respectively. The dependence of the accuracy of
the quality of the data inversion is similar to the previous case: for α = 0, 1,
the agreement is virtually perfect, while for α = 2, 3, we have progressively
worse performance in the low-frequency range. Nonetheless, the peaks in the
imaginary part are still well reproduced, while the dispersive structures in
the real part are present but shifted toward lower values. In this case, the
quality of the retrieved data for α = 4 and α = 3 is more distinct than in the



96 8 Kramers-Kronig Relations and Sum Rules for Data Analysis: Examples

previous data set. The inversion with α = 4 presents a notable disagreement
in the whole lower half of the data range for both the real and the imagi-
nary parts. In particular, we see that in Fig. 8.2a, the dispersive structure is
absent, while the main peak in Fig. 8.2b is missing.

Usually, it may be expected that only the real or the imaginary part of
nonlinear susceptibility has been measured. The normal procedure is then to
try data inversion using K-K in order to calculate the missing part.

The results in Figs. 8.1–8.2 confirm that the best convergence is obtained
when using conventional K-K. Hence, K-K relations for the α = 0 moment
of susceptibility should generally be used to obtain a first best guess for
the inversion of optical data, and they should be used as seed for any self-
consistent retrieval procedure. Nevertheless, if there is good agreement with
the inversions obtained with higher values of α, it is reasonable to conclude
that the dispersion relations provide much more robust results. In this sense,
the two data sets presented here show good self-consistency.

8.2.2 Kramers-Kronig Inversion of the Second Power
of Harmonic-Generation Susceptibility

We wish to emphasize that if on one side, consideration of a higher power
of the susceptibility implicitly filters out noise and errors in the tails of the
data, on the other side, experimental errors in the relevant features of the
spectrum – peaks for the imaginary part and dispersive structures for the
real part – are greatly enhanced if the higher powers of the susceptibility are
considered. In the latter case, consistency between the K-K inversion of the
different moments is expected to be more problematic than in the k = 1 case.
Therefore, improved convergence for more moments will occur for the powers
of susceptibility k > 1, only if the data are basically good [32,34].

In Fig. 8.3a,b, we show the results of K-K inversion for the real and imagi-
nary parts of the second power of third-harmonic-generation susceptibility on
polysilane. We observe that for α = 0, 1, 2, the agreement between the exper-
imental and retrieved data is almost perfect, while it becomes progressively
worse for increasing α. Nevertheless, as long as α ≤ 6, the main features are
reproduced well for both the real and the imaginary parts, and the retrieved
data match well if the photon energy is ≥ 1.0 eV.

In Fig. 8.4a,b, we show the result of applying K-K relations to the sec-
ond power of the susceptibility data taken on polythiophene. In this case,
the agreement is also very good if α = 0, 1, 2, but the narrower frequency
range does not permit data inversion if very high moments are considered. If
we consider the real part – Fig. 8.4a – for α = 3, 4, the K-K data inversion
provides good reproduction of the experimental data also for photon energies
≤ 0.7 eV. For α ≥ 5, there is no convergence in the lower half of the spectral
range. For the imaginary part – Fig. 8.4b – we can repeat the same obser-
vations, except that for α = 5, there still is good reproduction of the main
features of the curve.
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Fig. 8.3. Efficacy of K-K relations in retrieving (a) Re{[χ(3)(3ω)]2} and
(b) Im{[χ(3)(3ω)]2} on polysilane. The line legends for the results of the K-K rela-
tions are common to both figures. Reproduced from [32]

The theory predicts convergence for K-K relations with α ≤ 7 and di-
vergence for α = 8. In our analysis, we have divergence already for α = 7
in the case of polysilane and for α = 6, 7 in the case of polythiophene data.
The disagreement between the theory and the experiment can be safely at-
tributed to the truncation occurring in the high-frequency range. The poor
representation of far asymptotic behavior affects mostly the convergence of
dispersion relations of very high moments.

We emphasize that if only one of the real or imaginary parts of the
harmonic-generation susceptibility has been measured experimentally, there
is no direct use of K-K relations relative to the higher powers of the suscepti-
bility, since the multiplication mixes the real and imaginary parts. Hence, in
this case, the K-K relations for k > 1 can be used as tests for the robustness
of the results obtained with the dispersion relations applied to conventional
susceptibility.
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Fig. 8.4. Efficacy of K-K relations in retrieving (a) Re{[χ(3)(3ω)]2} and
(b) Im{[χ(3)(3ω)]2} on polythiophene. The line legends for the results of the K-
K relations are common to both figures. Reproduced from [32]

8.3 Verification of Sum Rules
for Harmonic-Generation Susceptibility

In general, good accuracy in the verification of sum rules is more difficult to
achieve than for K-K relations. In consequence, a positive outcome of this
test provides a very strong argument in support of the quality and coherence
of the experimental data [75,76].

In the case of harmonic nonlinear processes, the technical constraints for
acquiring information about a very wide frequency range are very severe, and
verification of the sum rules is critical, especially for those involving relatively
large values of α which determine a slower asymptotic decrease. Nevertheless,
if we consider increasingly large values of k, the integrands in (7.18) and (7.19)
have a much faster asymptotic decrease, so that the missing high-frequency
tails tend to become negligible. Therefore, we expect that for a given α, the
convergence of the sum rules should be more accurate for higher values of k,
if we assume that the main features of the spectrum are well reproduced by
the experimental data, as explained in the previous section.

We focus first on the vanishing sum rules (7.18)–(7.19). In order to have
a measure of how precisely the vanishing sum rules are obeyed for the two
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Fig. 8.5. Convergence to zero of the vanishing sum rules (a) ω2αRe{[χ(3)(3ω)]k}
and (b) ω2α+1Im{[χ(3)(3ω)]k} with 1 ≤ k ≤ 5, data on polysilane. Reproduced
from [32]

experimental data sets under examination, along the lines of Altarelli et al.
[9, 78], we introduce the dimensionless quantities ZRe and ZIm:

ZRe(α, k) =

∣∣∣∣∣
∫ ωmax

ωmin
ω2αRe{[χ(3)(3ω)]k}dω∫ ωmax

ωmin
ω2α|Re{[χ(3)(3ω)]k}|dω

∣∣∣∣∣ , (8.1)

ZIm(α, k) =

∣∣∣∣∣
∫ ωmax

ωmin
ω2α+1Im{[χ(3)(3ω)]k}dω∫ ωmax

ωmin
ω2α+1|Im{[χ(3)(3ω)]k}|dω

∣∣∣∣∣ . (8.2)

Low values of ZRe(α, k) and ZIm(α, k) imply that the negative and positive
contributions to the corresponding sum rule cancel out quite precisely com-
pared to their total absolute values. The two data sets for the polymers have
quite different performance in the verification of these sum rules.

In Fig. 8.5a,b, we present the results obtained with the data taken on
polysilane by considering 1 ≤ k ≤ 5 for, respectively, the sum rules of the real
and the imaginary parts. We can draw very similar conclusions in both cases.
Generally, we see that for a given α, we have better convergence when a higher
k is considered, with a remarkable increase in the accuracy of the sum rules for
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Fig. 8.6. Convergence to zero of the vanishing sum rules (a) ω2αRe{[χ(3)(3ω)]k}
and (b) ω2α+1Im{[χ(3)(3ω)]k} with 1 ≤ k ≤ 5, data on polythiophene. Reproduced
from [32]

k ≥ 3. Consistent with the argument that the speed of asymptotic behavior is
critical in determining the accuracy of the sum rule, we generally also have a
decrease in the quality of the convergence to zero when, for a given k, higher
moments are considered, thus increasing the value of α. Particularly impres-
sive is the increase in the performance in the convergence of the sum rules of
χ(3)(3ω) for both the real part(2α = 0, 2, 4, 6) and the imaginary part (2α +
1 = 1, 3, 5) when we consider k = 4, 5 instead of k = 1. The values of ZRe and
ZIm decrease by more than three orders of magnitude in all cases considered.

In Fig. 8.6a,b, we present the corresponding results for the experimental
data found for polythiophene. Most of the sum rules computed with this data
set show very poor convergence to zero, since the corresponding ZIm and ZRe
are above 10−1. Nevertheless, we can draw conclusions similar to those in
the previous case in terms of change in the accuracy of the convergence for
different values of k and α. Consistent with the relevance of the asymptotic
behavior, the precision increases with increasing k and with decreasing α. But
in this case, for a given α, the improvement in the convergence of the sum
rules obtained by considering a high value of k, instead of k = 1, is generally
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small, in most cases consisting of the decrease of ZIm and ZRe below or around
one order of magnitude.

The two data sets for polymers differ greatly in the precision achieved in
the verification of the sum rules. In many corresponding cases, the polysilane
data provide results that are better by orders of magnitude. The main reason
for this discrepancy is the much stronger dependence of the sum rule precision
on the position of the high-frequency range experimental cutoff relative to
the saturation of the electronic transitions of the material. It is likely that
the data on polythiophene, apart from being narrower in absolute terms,
provide a more limited description of the main electronic properties of the
material. This result is consistent with the previously presented slightly worse
performance of this data set in the K-K inversion of the second power of
χ(3)(3ω), where the relevance of the out-of-range data is also quite prominent.

For both of the two data sets considered in this study, there is no con-
sistency between the nonvanishing sum rules referring to the various powers
1 ≤ k ≤ 5 of the susceptibility under examination, since the previously es-
tablished consistency relation (7.21) is essentially not obeyed. Hence, the
structural constant determined by the value resulting from the integration of
the highest moment of the imaginary part of the harmonic-generation sus-
ceptibility presented in (7.20) cannot be reliably evaluated with the data sets
we are considering. The poor performance of the experimental data in repro-
ducing this theoretical result is essentially due to the fact that we are dealing
with the slowest converging sum rules for each k. These depend delicately on
the asymptotic behavior of the data, which, as already noted, is relatively
poorly represented, given the narrowness of the data under analysis. We con-
clude that better data covering a much wider spectral range are required to
deal effectively with nonvanishing sum rules.

8.4 Application
of Singly Subtractive Kramers-Kronig Relations

Here we apply singly subtractive K-K relations (7.29)–(7.30) for the analysis
of the experimental values of the real and imaginary parts of the nonlinear
susceptibility of the previously presented third-order harmonic wave genera-
tion on polysilane, obtained by Kishida et al. [29]. We will henceforth use a
scalar notation because we have no information on the tensorial components
involved in the measurements.

First, we consider only data ranging from 0.9 to 1.4 eV in order to simulate
low data availability, and then we compare the quality of the data inversion
obtained with the α = 0 conventional K-K and SSKK relations within this
energy range [31]. The interval 0.9–1.4 eV constitutes a good test since it con-
tains the most relevant features of both parts of the susceptibility. However,
a lot of the spectral structure is left outside the interval and the asymptotic
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Fig. 8.7. Efficacy of SSKK vs. K-K relations in retrieving (a) Re{χ(3)(3ω)} and
(b) Im{χ(3)(3ω)} on polysilane (•=anchor point). Reproduced from [31]

behavior is not established for either part. Hence, no plain optimal conditions
for optical data inversion are established.

In Fig. 8.7a, we show the results obtained for the real part of the third-
order harmonic-generation susceptibility. The solid line in Fig. 8.7a represents
the experimental data. The dash-dotted line in Fig. 8.7a, which was calcu-
lated by using a conventional K-K relation by truncated integration of (7.14),
consistently gives a poor match with the actual line. In contrast, we obtain
better agreement with a single anchor point located at ω1 = 0.9 eV, which is
represented by the dashed line in Fig. 8.7a. SSKK and measured data for the
real part of the susceptibility are almost indistinguishable up to 1.3 eV.

In Fig. 8.7b, calculations similar to those presented above are shown, but
for the imaginary part of nonlinear susceptibility. In this case the anchor
point is located at ω1 = 1 eV. From Fig. 8.7b, we observe that the precision
of the data inversion is dramatically better when using SSKK rather than
conventional K-K relations. The presence of the anchor point greatly reduces
the errors of the estimation performed with conventional K-K relations in the
energy range 0.9–1.4 eV.
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Fig. 8.8. Efficacy of SSKK relations in retrieving (a) Re{χ(3)(3ω)} and (b)
Im{χ(3)(3ω)} over the full spectral range (•=anchor point). Reproduced from [33]

We then test the efficacy of the SSKK when the higher moments of suscep-
tibility are considered, and we choose to consider the whole available spectral
range 0.4 − 2.5 eV, thus adopting a high data availability scenario [33].

The anchor point we select for the real part is at the lower boundary
of the interval, thus simulating an experimental situation where we have
information on quasi-static phenomena. In Fig. 8.8a, we present our results
of the data inversion for the real part, which can be compared with those
obtained with conventional K-K shown in Fig. 8.1a, which nevertheless were
obtained after an optimization procedure. These should be interpreted more
in terms of self-consistency analysis than in terms of pure data inversion. We
can see that the SSKK outperform conventional K-K relations and provide
virtually perfect data inversion for 0 ≤ α ≤ 2, while for α = 3, the finite range
causes disagreement between the measured and retrieved data for photon
energy ≤ 0.9 eV. In the α = 4 case, for which the theory does not prescribe
convergence, we have reasonable agreement only in the high-energy range.

In the case of the imaginary part, the anchor point is on the low-energy
side of the main spectral feature, just out of the resonance. In Fig. 8.8b,
we present the results of optical data inversion with SSKK relations for the
imaginary part, which, with the same previously discussed caveats, should
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be compared with those obtained with conventional K-K relations and are
presented in Fig. 8.1b. In the case of the imaginary part, we also observe
that the SSKK procedure provides more precise data inversion than with
conventional K-K relations. The agreement between measured and retrieved
data is excellent for 0 ≤ α ≤ 2, with no relevant decrease of performance
for increasing α, while for α = 3, we have good agreement except for photon
energy ≤ 0.7 eV. In the theoretically nonconverging α = 4 case, somewhat
surprisingly we still obtain good performance of the SSKK for an extended
data range. We can interpret this result heuristically as a manifestation of
the faster asymptotic decrease of the integrands realized when SSKK rather
than K-K relations are considered.

Thus, we have observed how an independent measurement of the un-
known part of the complex third-order nonlinear susceptibility for a given
frequency relaxes the limitations imposed by the finiteness of the measured
spectral range, the fundamental reason being that in the obtained SSKK re-
lations faster asymptotic decreasing integrands are present. SSKK relations
can provide a reliable data inversion procedure based on using measured data
alone. We have demonstrated that SSKK relations yield a more precise data
inversion, using only a single anchor point, than conventional K-K relations.

Naturally, it is also possible to exploit MSKK if higher precision is re-
quired. However, the measurement of multiple anchor points may be exper-
imentally tedious. Finally, we note that MSKK relations are valid for all
holomorphic nonlinear susceptibilities of arbitrary order. As an example of
such holomorphic third-order nonlinear susceptibilities, we mention those re-
lated to pump-and-probe nonlinear processes [129], previously analyzed in
Sect. 6.4.

8.5 Estimates of the Truncation Error
in Kramers-Kronig Relations

In order to approximately assess the truncation error in optical data inversion,
we separate the contribution to the integration in the K-K relations related
to the range [ωmin, ωmax] covered by the experimental data, as follows:

Re
{

χ(n) (nω)
}

− Re
{

χ(n) (nω)tr
}

=

2
πω2α

P

ωmin∫
0

ω′2α+1Im
{
χ(n) (nω′)

}
ω′2 − ω2 dω′

+
2

πω2α
P

∞∫
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{
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(8.3)
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(8.4)

where the subscript tr refers to the truncated data inversion and 0 ≤ α ≤ n.
We consider ωmin � ω � ωmax and approximate the real and imaginary
parts of the susceptibility as follows:

Re
{

χ(n) (nω)
}

∼ Aω2a, ω < ωmin,

Re
{

χ(n) (nω)
}

∼ Bω−2b, ω > ωmax,

Im
{

χ(n) (nω)
}

∼ Cω2c+1, ω < ωmin,

Im
{

χ(n) (nω)
}

∼ Dω−2d−1, ω > ωmax,

(8.5)

where a, b, c, d ≥ 0 and b, d ≥ α + 1; and we have considered the symmetry
properties of the real and imaginary part (7.3). By plugging the expansions
(8.5) into (8.3) and (8.4) we obtain
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(8.7)

We observe that the corrections go to zero when ωmin → 0 and ωmax → ∞.
Morever, these formulas explain why we can observe in Figs. 8.1–8.2 that the
largest discrepancies between the retrieved and the actual data are located
in the lower part of the energy spectrum and that the magnitude of the
discrepancy consistently increases with decreasing values of ω. In particular,
by substituting a = 0, b = d = n+1, c = 1, and d = 2n+1, as suggested by the
results presented in Chap. 7 and by the anharmonic oscillator model [34,77],
and selecting α = 0,
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8.6 Sum Rules and Static Second-Order
Nonlinear Susceptibility

Recently, it has been shown how to use the constraints imposed by the sum
rules relevant to second-harmonic-generation susceptibility to derive efficient
ways to estimate second-order static susceptibility χ

(2)
ijk(0; 0, 0) for semicon-

ductors without a center of inversion [180]. Such a quantity has been difficult
to estimate with ab initio as well as with semiempirical approaches because
of the sensitivity to constituent parameters (energy differences and matrix
elements) and because of the unavoidable truncation error due to the consid-
eration of a finite set of eigenstates [175,192,193].

If we adopt a single-resonance simplified quantum model for solids, it is
possible to write the second-harmonic-generation susceptibility as

χ
(2)
ijk ∼ α

(1)
ijk

ω0 − ω − iγ
+

α
(2)
ijk

ω0 − 2ω − iγ
+

α
(3)
ijk

(ω0 − ω − iγ)2
+ (ω → −ω)∗

, (8.10)

where ω0 is the resonance frequency; α
(1)
ijk, α

(2)
ijk, and α

(3)
ijk are tensorial pa-

rameters; and the last term indicates the terms obtained by changing ω into
−ω and taking the conjugate of the first three terms. If we impose sum rules
(7.18)–(7.20) on expression (8.10) with k = 1 and n = 2, we derive the values
of parameters α

(1)
ijk, α

(2)
ijk, and α

(3)
ijk, and find after lengthy calculations that

the second-harmonic susceptibility can be expressed as a product of linear
susceptibilities in the form of Miller’s rule. The Miller empirical rule [194]
generalizes the observation that in many materials, the second-harmonic-
generation susceptibility in the transparency region can be expressed in terms
of the product of suitable linear susceptibility functions:

χ
(2)
ijk(2ω; ω, ω) ∼ ∆ijkχ

(1)
ii (2ω)χ(1)

jj (ω)χ(1)
kk (ω), (8.11)

where ∆ijk is a coupling constant, named Miller’s ∆, relating nonlinear and
the linear processes. Miller’s ∆ can be expressed as
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Fig. 8.9. Second-order static susceptibility for some semiconductors. Abscissa:
theoretical calculations in units of 10−8 esu. Ordinate: experimental data in units
of 10−8 esu. Full squares: data from [180]; open squares: data from [192]. Adapted
from [180]

∆ijk =
1

2e3

(
N

V

)−2〈
∂3V (r)

∂ri∂rj∂rk

〉
0
, (8.12)

in agreement with the results obtained with the anharmonic oscillator model,
when the quantum expectation value of the ground state substitutes for the
evaluation at the equilibrium position [34, 77]. If we take the static limit of
expression (8.11), we obtain

χ
(2)
ijk(0; 0, 0) ∼ ∆ijkχ

(1)
ii (0)χ(1)

jj (0)χ(1)
kk (0). (8.13)

Since the static linear susceptibility is a well-known and easily measurable
quantity for every material, it is then possible to obtain an estimate of the
second-order static susceptibility once Miller’s ∆ can be computed. As thor-
oughly explained in [180], this can be accomplished by considering the widely
available pseudopotential functions and subtracting the electrons’ Hartree
screening. In Fig. 8.9, we show that such an approach, although based on
a very simplified scheme, greatly outperforms much more sophisticated and
time-expensive calculations, since it is based and focused on the fundamental
properties of optical response functions.



9 Modified Kramers-Kronig Relations
in Nonlinear Optics

9.1 Modified Kramers-Kronig Relations
for a Meromorphic Nonlinear Quantity

In this chapter, we wish to develop a dispersion theory for nonlinear optics
that overcomes some of the limitations of the tools introduced in the previous
chapters. It is clearly stated by Toll [1] that causality is the primary reason
for the existence of K-K relations in the field of linear optics. This is certainly
true, but in the field of nonlinear optics, it cannot be taken for granted that
causality is a necessary and sufficient condition for the validity of K-K rela-
tions, as thoroughly discussed in Chap. 6. Tokunaga et al. [195] have shown
on grounds of the experimental and theoretical studies that K-K relations
are of limited validity in pump-and-probe femtosecond time-resolved spec-
troscopy. According to them, only in some special cases, related to negative
and positive time delays between pump-and-probe light pulses, are K-K rela-
tions valid, although obviously causality always works when the pump beam
arrives before the probe in pump-and-probe experiments. Furthermore they
also observed a switch of the sign of the K-K relations. They correctly argued
that in general in the scheme of positive or zero delay, K-K relations are not
valid at all.

As far as we know, the angular-frequency-dependent nonlinear suscepti-
bility in any known case of nonlinear optical spectroscopy can be described
either as a holomorphic or meromorphic quantity. In a sense, meromorphic
nonlinear susceptibility presents a more general case than that of the holomor-
phic one. The reason is that in a mathematical sense, holomorphic nonlinear
susceptibility can be considered a special case of meromorphic nonlinear
susceptibility, which is a holomorphic function except at complex poles.

Below, we present results for a meromorphic nonlinear quantity, which
may be nonlinear susceptibility, refractive index, or reflectivity, respectively,
with the purpose of generalizing dispersion relations and sum rules. We as-
sume the most general case of complex response function. Such a presumption
implies that there is no assumption of specific symmetry of the real and imag-
inary parts of the nonlinear quantity [127]. Note that Tokunaga et al. [195]
observed, simultaneously, real and imaginary parts of susceptibility, both of
which were even functions at zero delay. In the context of the real response
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A A

C C

a) b)

Γ

RR

Fig. 9.1. Contour for the derivation of (a) the dispersion relations and (b) the sum
rules (×=pole). Reproduced from [196]

function, the real and imaginary parts of nonlinear susceptibility always obey
even and odd parity, respectively.

Now under the rather general assumption of considering a meromorphic
function without parity, we define a function f , which is a nonlinear opti-
cal quantity as a function of a single angular frequency variable. Naturally,
various angular frequencies and their combinations may be present, but, for
the sake of simplicity in the following we indicate only one variable. This
is natural since usually in multiple light beam experiments in nonlinear op-
tics, only the wavelength of the probe beam is scanned, i.e. there is only
one true variable, as discussed in the context of the Scandolo theorem in
Chap. 6. The function f is assumed to be a complex function of real variable
f(ω) = u(ω) + iv(ω), where ω is the angular frequency. Next we use com-
plex analysis and consider the function f = f(ω), as a meromorphic function
of the complex frequency variable Ω. Next we consider a complex contour
integration, as shown in Fig. 9.1a:∮

C

f(Ω)
Ω − ω

dΩ = P

R∫
−R

f(ω)
ω′ − ω

dω′ +
∫
Γ

f(Ω)
Ω − ω

dΩ +
∫
A

f(Ω)
Ω − ω

dΩ. (9.1)

The next procedure is to let the radius R tend to infinity. The integration
along the closed contour on the left hand-side of the equation gives, according
to the theorem of residues, usually a nonzero contribution due to the poles
located in the upper half plane. The first integral on the right-hand side
of (9.1) is the integral that is the origin of Hilbert transforms. The second
integral on the right hand-side in turn gives a nonzero contribution due to
the residue theorem. Finally the last integral on the right-hand side of (9.1)
is equal to zero (rigorous mathematical proof is presented in [188]). Finally,
by separation of the real and imaginary parts, we get the results

u(ω) =
1
π

P

∞∫
−∞

v(ω′)
ω′ − ω

dω′ − 2Re

⎧⎨⎩
poles∑

Im{Ω}>0

Res
[

f(Ω)
Ω − ω

]⎫⎬⎭ (9.2)
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and

v(ω) = − 1
π

P

∞∫
−∞

u(ω′)
ω′ − ω

dω′ − 2Im

⎧⎨⎩
poles∑

Im{Ω}>0

Res
[

f(Ω)
Ω − ω

]⎫⎬⎭ . (9.3)

If there are no poles in the upper half plane, certainly then the residue terms
in (9.2) and (9.3) are equal to zero. Thus we are dealing with a holomorphic
quantity and Hilbert transforms hold. This means that the response function
is real and, symmetry relations hold, which imply the validity of K-K rela-
tions. Fortunately, (9.2) and (9.3) can be written in slightly different forms by
resolving the functions u and v into the sums of even and odd parts as follows:

u(ω) = ueven(ω) + uodd(ω), (9.4)

v(ω) = veven(ω) + vodd(ω). (9.5)

Thus according to (9.2)–(9.5),

u(ω) = − 2ω

π
P

∞∫
0

veven(ω′)
ω′2 − ω2 dω′ +

2
π

P

∞∫
0

ωvodd(ω′)
ω′2 − ω2 dω′

− 2Re

⎧⎨⎩
poles∑

Im{Ω}>0

Res
[

f(Ω)
Ω − ω

]⎫⎬⎭
(9.6)

and

v(ω) =
2ω

π
P

∞∫
0

ueven(ω′)
ω′2 − ω2 dω′ − 2

π
P

∞∫
0

ω′uodd(ω′)
ω′2 − ω2 dω′

− 2Im

⎧⎨⎩
poles∑

Im{Ω}>0

Res
[

f(Ω)
Ω − ω

]⎫⎬⎭ ,

(9.7)

where ω > 0. From (9.6) and (9.7), we observe that on the right-hand side,
there are combinations of K-K relations and in addition the residue term.
The residue term can be problematic, because it requires knowledge of the
complex function f of a complex variable. Because the poles are character-
ized by resonance points of the system, they can be estimated, provided that
information on the transitional frequencies and the lifetimes of the electronic
states is available. Then it is reasonable to try to construct the complex
nonlinear function which is holomorphic almost everywhere except at the
poles. In the most general case of meromorphic function, the existence of
complex zeros with f is also allowed. Note that the dispersion theory above
can also be applied to the powers of the function f , fn, where n is an integer,
and also to the appropriate moments, ωkfn, where k is an integer.
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Usually, the wavelength dependent spectrum in nonlinear optics is
recorded. If we get information only on modulus |f |, then the real and imagi-
nary parts can be retrieved both in linear and nonlinear optical spectroscopy
by the maximum entropy method [15, 188], discussed in the next chapter.
Then the calculation of the correlation function, in the case of a weak probe
beam, may be based on the procedure presented by Remacle and Levine [127].
However, such a study is beyond the scope of this book.

9.2 Sum Rules for a Meromorphic Nonlinear Quantity

In the following, we consider some basic sum rules that are valid for mero-
morphic nonlinear quantities. If we set ω′ = 0 in (9.2) and (9.3), we get dc
sum rules as follows:

u(0) =
1
π

P

∞∫
−∞

v(ω′)
ω′ dω′ − 2Re

⎧⎨⎩
poles∑

Im{Ω}>0

Res
[
f(Ω)

Ω

]⎫⎬⎭ (9.8)

and

v(0) = − 1
π

P

∞∫
−∞

u(ω′)
ω′ dω′ − 2Im

⎧⎨⎩
poles∑

Im{Ω}>0

Res
[
f(Ω)

Ω

]⎫⎬⎭ . (9.9)

If instead, we wish to write the static sum rules for the dispersion relations
of (9.6) and (9.7) then the first integrals on the right-hand side of such equa-
tions vanish and only the odd parts of the functions contribute to the dc
sum rules. dc sum rules constitute constraints that meromorphic nonlinear
susceptibilities or memory functions have to obey.

Next we derive another set of sum rules, which may have practical utility
at least in degenerate four-wave mixing spectroscopy. We exploit the complex
contour integration shown in Fig. 9.1b and write the following equation:∮

C

f(Ω)dΩ =

R∫
−R

f(ω′)dω′ +
∫
A

f(Ω)dΩ. (9.10)

We let the radius R tend to infinity and note that the integral along arc A
vanishes. With the aid of the theorem of residues, we get

I1 = P

∞∫
−∞

u(ω)dω = −2πIm

⎧⎨⎩
poles∑

Im{Ω}>0

Res [f(Ω)]

⎫⎬⎭ (9.11)

and

I2 = P

∞∫
−∞

v(ω′)dω′ = 2πRe

⎧⎨⎩
poles∑

Im{Ω}>0

Res [f(Ω)]

⎫⎬⎭ . (9.12)
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In the case of the partition of even and odd functions, that is to say, (9.4) and
(9.5) are exploited, then sum rules (9.11) and (9.12) will have changes on the
left-hand sides of these equations. In other words, they involve integration
only on the semi-infinite positive real axis, and the integrands involve only
even functions. Sum rules such as those given by (9.11) and (9.12) constitute
other constraints that the nonlinear meromorphic quantity has to fulfill. In
the case of a holomorphic quantity, the only sum rule follows from (9.11), i.e.∫ ∞

−∞
u(ω′)dω′ = 0. (9.13)

Note that we have abandoned the principal value sign “P,” since usually the
integral exists as a conventional integral. Unfortunately, sum rules that in-
volve residue terms, so far, have importance in testing theoretical models,
whereas sum rules that deal directly with measured data have crucial prac-
tical importance in testing e.g. the validity of measured spectra. Therefore,
we now take a step toward more practical sum rules, which, however, involve
meromorphic nonlinear quantities. This is possible by integrating (9.2)–(9.3)
as principal value integrals with respect to ω′. Then we find that

I3 =P

∞∫
−∞

u(ω′)dω′ = P

∞∫
−∞

⎡⎣ 1
π

P

∞∫
−∞

v(ω)
ω − ω′ dω

⎤⎦dω′

− P

∞∫
−∞

2Re

⎧⎨⎩
poles∑

Im{Ω}>0

Res
[

f(Ω)
Ω − ω′

]⎫⎬⎭dω′

= P

∞∫
−∞

⎡⎣ 1
π

P

∞∫
−∞

v(ω)
ω − ω′ dω

⎤⎦dω′ − 2πIm

⎧⎨⎩
poles∑

Im{Ω}>0

Res [f(Ω)]

⎫⎬⎭
(9.14)

and

I4 =P

∞∫
−∞

v(ω′)dω′ = P

∞∫
−∞

⎡⎣− 1
π

P

∞∫
−∞

u(ω)
ω − ω′ dω

⎤⎦dω′

− P

∞∫
−∞

2Im

⎧⎨⎩
poles∑

Im{Ω}>0

Res
[

f(Ω)
Ω − ω′

]⎫⎬⎭dω′

= P

∞∫
−∞

⎡⎣− 1
π

P

∞∫
−∞

u(ω)
ω − ω′ dω

⎤⎦dω′ + 2πRe

⎧⎨⎩
poles∑

Im{Ω}>0

Res [f(Ω)]

⎫⎬⎭ .

(9.15)

Actually, principal value integration is needed because of the residue terms
in (9.14)–(9.15) which diverge logarithmically. The last expressions in (9.14)–



114 9 Modified Kramers-Kronig Relations in Nonlinear Optics

(9.15) were obtained using the partial fraction of a meromorphic func-
tion [197] and assuming that the poles appearing in the upper half plane
are of the first order. As far as we know, in all cases of nonlinear suscep-
tibility, the order of the poles appearing in the upper half plane is k = 1,
whereas the order of poles appearing in the lower half plane can be higher
(see, e.g. [129]).

The calculation of the integral

I5 = P

∞∫
−∞

2Re

⎧⎨⎩
poles∑

Im{Ω}>0

Res
[

f(Ω)
Ω − ω

]⎫⎬⎭dω (9.16)

is based on the use of the partial fraction cik/(Ω − ai)k, where aik are the
poles of the function, k is a positive integer, and cik are complex constants. It
is sufficient to demonstrate the calculation for one residue term because the
other terms are obtained in a similar manner. Then we find that when k = 1,

P

∞∫
−∞

Re
{

ci1

ai − ω

}
dω = P

∞∫
−∞

Re
Re{ci1} + iIm{ci1}

Re{ai} − ω + iIm{ai}dω

= P

∞∫
−∞

Re{ci1} + [Re{ai} − ω] + Im{ci1}Im{ai}
(Re{ai} − ω)2 + (Im{ai})2

dω

= P

∞∫
−∞

Re{ci1} [Re{ai} − ω]
(Re{ai} − ω)2 + (Im{ai})2

dω (9.17)

+ P

∞∫
−∞

Im{ci1}Im{ai}
(Re{ai} − ω)2 + (Im{ai})2

dω

= P

∞∫
−∞

Im{ci1}Im{ai}
(Re{ai} − ω)2 + (Im{ai})2

dω = πIm{ci1}.

Now if we compare (9.11), (9.12), (9.14), and (9.15), we find that [196]

P

∞∫
−∞

⎡⎣P

∞∫
−∞

v(ω′)
ω′ − ω

dω′

⎤⎦dω = 0 (9.18)

and

P

∞∫
−∞

⎡⎣P

∞∫
−∞

u(ω′)
ω′ − ω

dω′

⎤⎦dω = 0. (9.19)

The order of the double integration can be changed only upon the assumption
of uniform convergent integrals. In such a case it is possible to integrate the
function (ω′−ω)−1 separately in (9.14)–(9.15). King [198] used such a strategy
to derive sum rules for optical constants in linear optics.



10 The Maximum Entropy Method:
Theory and Applications

10.1 The Theory of the Maximum Entropy Method

In the measurement of an optical power spectrum, the intensity distribution
of light I(ω) is proportional to the squared modulus |f(ω)|2 of a complex
function f(ω) evaluated for ω ∈ R. For instance, in reflection spectroscopy,
the intensity reflectance R(ω) = |r(ω)|2 is measured. Typically, while only the
modulus of f(ω) can actually be measured, it is necessary to know the com-
plex function f(ω) = |f(ω)| exp[iθ(ω)] itself, including also the phase θ(ω)
in order to have a complete picture of the properties of the sample under
investigation. A new phase retrieval approach was proposed by Vartiainen et
al. [199]. The method uses the maximum entropy model or method (MEM).
Its basis can be found in the Burg study about the calculation of a power
spectrum of a finite time series [182]. The Burg idea was to choose the spec-
trum that corresponds to the most random time series, whose autocorrelation
function agrees with a set of known values. This approach leads to a model
for the power spectrum by maximizing the entropy of the corresponding time
series, which is the reason for the name MEM. With its close relation to
the concept of maximum entropy, this theory has also been used in optical
spectroscopy, e.g. as a line-narrowing procedure [200,201].

The applicability of MEM as a phase retrieval procedure has been verified
for linear reflectance from solid [183,202,203] and liquid [204] phases. In the
study of [204], the reflectometric data obtained on liquids from the process
industry and subsequent comparison with other spectral devices and data
analysis methods indicated the correct functioning of MEM analysis.

In an optically nonlinear medium, MEM can be applied to phase retrieval
from the measured modulus of nonlinear susceptibility, in the anti-Stokes
Raman scattering spectrum [205], the third-harmonic wave from polysilane
[206], sum frequency generation spectroscopy [207, 208], meromorphic total
susceptibility [209], degenerate nonlinear susceptibility from Maxwell Garnett
nanocomposites [210], and reflectivity of nonlinear Bruggeman liquids [71].

The merit of MEM is that it does not require, in principle, determination
of the intensity over the whole electromagnetic spectrum, but only of the re-
gion ω1 ≤ ω ≤ ω2 of interest. As well as intensity data, additional information
about a given medium is required in order to determine its complex optical
properties. Such information at anchor points commonly comprises the real
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and/or imaginary parts of the complex quantity of the medium determined
at a frequency within the considered range ω1 ≤ ω ≤ ω2.

In practice, the phase retrieval procedure using the MEM requires fitting a
power spectrum, e.g. an experimental reflectance R, by its maximum entropy
model (the derivation can be found in [211]) given by

R(ν) =
|β|2

|AM (ν)|2 , (10.1)

where AM (ν) = 1 +
∑M

m=1 am exp(−i2πmν) is a MEM polynomial given by
the MEM coefficients am and by the normalized frequency ν. The latter is
defined by the measurement range [ω1, ω2] of R(ω) as ν = (ω−ω1)/(ω2 −ω1).
All the unknown MEM coefficients am and |β|2 are obtained from a linear
Toeplitz system:⎛⎜⎜⎜⎝

C(0) C(−1) · · · C(−M)
C(1) C(0) · · · C(1 − M)

...
...

. . .
...

C(M) C(M − 1) · · · C(0)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
a1
...

aM

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
|β|2
0
...
0

⎞⎟⎟⎟⎠ , (10.2)

where the autocorrelation function C(t) is defined by a Fourier transform of
R(ν) as

C(t) =
∫ 1

0
R(ν) exp[i2πtν]dν. (10.3)

The phase retrieval is then based on deriving the MEM for the complex reflec-
tivity r(ν) = R1/2(ν) exp[iθ(ν)]. This is realized by defining a MEM phase,
ψ(ν), connected to the MEM polynomial as AM (ν) = |AM (ν)| exp[iψ(ν)] and
using (10.1) to get

r(ν) =
|β| exp[iθ(ν)]

|AM (ν)| =
|β| exp[i(θ(ν) − ψ(ν))]
|AM (ν)| exp[−iψ(ν)]

=
|β| exp[iφ(ν)]

A∗
M (ν)

. (10.4)

Equation (10.4) introduces an error phase, φ(ν) = θ(ν)−ψ(ν), which provides
a slowly varying background to θ(ν), whereas ψ(ν) has the same spectral
features as θ(ν). Since the MEM phase ψ is obtained by the MEM fitting of R,
the problem of finding the phase θ(ν) is now reduced to a problem of finding
the error phase. The idea in this is that typically φθ(ν) is a much simpler
function than θ(ν) [183]. Thus, any additional information on r(ν) that can
be used to obtain discrete values of θ(νl) at frequencies νl, l = 0, 1, . . . , L, can
be used to obtain a good estimate for φ(ν) by, e.g., a polynomial interpolation
as [203]

φ̂(ν) = B0 + B1ν + · · · + BLνL =
L∑

l=0

Blν
l. (10.5)

The error phase is usually a slowly varying function and in favorable cases,
only one or two anchor points are needed, i.e. the optimum degree of the
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polynomial is low. Brun et al. [212] presented an optimization method in
order to smoothen the error phase of a reflection spectrum. Vartiainen et
al. [184] derived sum rules in testing nonlinear susceptibility obtained using
the maximum entropy model.

10.2 The Maximum Entropy Method
in Linear Optical Spectroscopy

10.2.1 Phase Retrieval from Linear Reflectance

In linear reflection spectroscopy, the optical constants of a medium can be ob-
tained usually by ellipsometry. However, if the optical constants are required
across a relatively broad wavelength region, the conventional reflectometric
measurement performed by scanning the wavelength of the incident light is
usually a more appropriate method of measurement. In the case of normal
incidence, the polarization of the incident light is not relevant, whereas in the
case of oblique incidence, the nature of light polarization has to be properly
taken care. In the case of an ideal surface, reflection is governed by Fresnel’s
equations. In the case of normal incidence, we measure the reflectance, which
according to the (4.30) and (4.32) can be expressed as

R(ω) =
∣∣∣∣N(ω) − 1
N(ω) + 1

∣∣∣∣2 . (10.6)

Thus if we can resolve the complex reflectivity, then the real refractive index
and the extinction coefficient are obtained using relations

η(ω) = Re
{

1 + r(ω)
1 − r(ω)

}
, κ(ω) = Im

{
1 + r(ω)
1 − r(ω)

}
. (10.7)

In Fig. 10.1a, we show the reflectance curve of a KCl crystal. It has been pos-
sible to derive the complex reflectivity from (10.4) by inserting the reflectance
data into (10.1) and considering only one anchor point, selected on the basis
that there is usually a wavelength for insulators, far from resonances, such
that Im{r(ω)} vanishes. In Fig. 10.1b,c we show the real refractive index and
the extinction coefficient calculated from the real and imaginary parts of
reflectivity by using the MEM procedure and by applying (10.7).

The wavelength-dependent reflectance of liquids is usually measured by a
prism reflectometer, such as the device shown in Fig. 10.2, developed by Räty
et al. [214]. In that device, the angle of incidence ϕi is oblique but fixed. This
means that it is necessary to take care of the polarization degree of the
incident light. Since the interface between the face of a prism and a liquid is
ideal, Fresnel’s equations for oblique incidence can be exploited in the analysis
of the spectra. The usual way is to measure the reflectance for TE- or TM-
polarized light and use the MEM. In such a case, the intensity reflectances
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Fig. 10.1. (a) Reflectance of a KCl crystal as a function of energy. Exact (dots) and
calculated (solid lines); (b) real refractive index η and (c) extinction coefficient κ of
KCl. The calculations were done using the reflectancespectrum within the energy
range from 2 to 10 eV. Reproduced from [199]

Fig. 10.2. A schematic optical layout of the reflectometer. Reproduced from [213]
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are those given by (4.38) and (4.39). As an example, we consider the case of
lignin diluted in water. Lignin is one of the main components of wood fiber
and has particular importance in some industrial sectors such as the paper
industry. Lignin absorbs UV light, which causes the aging of white paper,
since it turns yellowish after long exposure to sunlight. In order to prevent
the aging process, lignin is removed from the pulp in the papermaking process.
In Fig. 10.3a, we show a reflectance curve for TE-polarized light, measured
using the reflectometer of Fig. 10.2. Now the task is to find the phase of rTE.
For this purpose, we set √

N2 − sin2 ϕi = a + ib. (10.8)

This means that we can write

rTE = |rTE| exp[iθ] =
√

RTE exp[iθ] = c + id =
cos ϕi − (a + ib)
cos ϕi + (a + ib)

. (10.9)

Now we can separate the real and imaginary parts in (10.9) as follows:

a =
1 − e

1 + e
cos ϕi, (10.10)

b =
−2d

(1 + d)(1 + e)
cos ϕi, (10.11)

where

e = c +
d2

1 + c
. (10.12)

With the aid of (10.8)–(10.11), the complex refractive index can be calculated
once the phase θ has been resolved from (4.38) by the MEM. In the case of
lignin solution, the anchor points were obtained by measuring the reflectance
of TE-polarized light adopting fixed wavelengths but scanning the angle of
incidence. Then the information on the chosen anchor points is obtained by
an optimization procedure, which is based on minimizing the sum

S =
∑

θ

[Rm(ϕi) − Rt(ϕi, ηprism, N)]2 , (10.13)

where Rm is the measured reflectance; Rt is the theoretical reflectance, ob-
tained from (4.38); and ηprism is the real refractive index of the prism.

Usually the optimum degree of the polynomial expression in (10.5) is
relatively low. The ideal case occurs when the error phase is given by linear
estimation. For the purpose of finding good linear estimations, we have found
that squeezing the measured spectrum is a useful procedure. The squeezed
spectrum is obtained as follows:

Rsq(ν; K) ≡ R(ω1) , 0 ≤ ν < zK(ω1), (10.14)
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Rsq(ν; K) ≡ R(ω) , zK(ω1) ≤ ν ≤ zK(ω2), (10.15)

Rsq(ν; K) ≡ R(ω2) , zK(ω2) < ν ≤ 1, (10.16)

where

zK(ω) = (2K + 1)−1
(

ω − ω1

ω2 − ω1
+ K

)
(10.17)

and

ν =
zK(ω) − zK(ω1)
zK(ω2) − zK(ω1)

. (10.18)

By choosing K = 0, we restore the original measured spectrum, whereas
when K = 2, the spectrum is squeezed from the interval ν ∈ [0, 1] into the
interval ν ∈ [0.4, 0.6]. In Fig. 10.3b,c, we show the real refractive index and the
extinction coefficient obtained for the lignin solution by applying the MEM
procedure described above and considering two anchor points at wavelengths
280 and 400 nm. The results for the complex refractive index are in good
agreement with those obtained by other optical techniques [204]. The MEM
procedure has also been successful in the estimation of the effective complex
refractive index of plastic pigments used in paint and paper [215].

Finally, we mention that simulations on magnetoreflectance [216], using
the squeezing procedure along with the MEM, have shown that it is possi-
ble to extract the complex refractive index of left- and right-hand circularly
polarized light.

10.2.2 Study of Surface Plasmon Resonance

The excitation of a plasmon, which is a quantized collective oscillation of
electrons, is possible by introducing a fluctuation in the charge density of
a metal. Surface plasmons exist at the boundary of the metal and can
be produced in some cases by using an external electric field. Let us first
consider the volume plasmon using the classical Drude–Lorentz oscillator
model [12, 14, 15, 17, 35, 38, 77]. As opposed to the case of insulators, when
metals are considered, there is no restoring force keeping the conduction
electrons confined in the vicinity of the nucleus. Then the complex dielectric
function εmr of a metal is

Re {εmr} = 1 − ω2
p

1
ω2 + γ2 , (10.19)

Im {εmr} = ω2
p

γ

ω(ω2 + γ2)
, (10.20)

which can de derived from the general Drude-Lorentz susceptibility by set-
ting the resonance angular frequency ω0 = 0 and considering the plasma
frequency ωp introduced in (3.43). As can be easily seen by inspection of
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Fig. 10.3. (a) Experimental reflectance curve for a water–lignin solution, (b) real
refractive index, and (c) extinction coefficient calculated using the MEM method.
The reference measurements are denoted as follows: Abbe refractometer (dot),
transmission (dotted line), and Attenuated Total Reflection (ATR) method (dashed
line) (scale on the right side of the graph). Reproduced from [217]
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Fig. 10.4. Opposite electric fields at the interface of a metal and an insulator

(10.19), Re{εmr(ωp)} ∼ 0 under the condition ω  γ. According to (10.19)–
(10.20), we can consider the following approximations for the high-frequency
range:

Re {εmr} ∼ 1 − ω2
p

ω2 , (10.21)

Im {εmr} � 1. (10.22)

Volume plasmons can be observed using a beam of electrons for excitation.
Here we are interested in surface plasmon resonance (SPR), which can be
excited by using a TM-polarized light beam. A thorough description of the
theory and applications of SPR can be found in the book by Räther [218]
and also in the review by Homola et al. [219].

We then consider the system of Fig. 10.4. The divergence of electric dis-
placement D is

∇ · D = εdrE+ − εmrE−, (10.23)

where εdr is the dielectric function of the dielectric medium shown in Fig. 10.4.
In the absence of external charges, the electric field arises only from the
polarization charges on the boundary, so that by symmetry, E+ = −E−.
Then (10.23) implies that

εmr = −εdr. (10.24)

If we substitute the approximation (10.21) and (10.21) of the real part of the
dielectric function in the left-hand side of (10.24), we find that the surface
plasmon frequency is

ωS =
ωp√

εdr + 1
. (10.25)

It follows from Maxwell’s equations that when a light beam has a TM-
polarized light component, only that component can generate a surface
plasma wave [220]. The oscillation of surface charge fluctuations cannot ordi-
narily be excited by light. Kretschmann and Räther proposed the exploitation
of a prism and a thin metallic film for surface plasma wave generation. Then
the observation of reflectance in the ATR mode, using e.g. the reflectometer
of Fig. 10.2, provides information about the resonance. That is to say, at a
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specific angle of incidence, the reflectance has a dip due to the fact that the
light beam is coupled more effectively to the metal film. The resonance angle
is larger than the critical angle, and it depends on the complex dielectric
function of the metal film, on the optical properties of the liquid (or gas)
to be studied, and on the refractive index of the prism. The reflectance can
be derived by inspection of the multiple light reflection in an ambient–film–
substrate system [221]. The expression of the reflectance is as follows:

R(ϕi) =
∣∣∣∣ rpm(ϕi) + rml(ϕi) exp [2ikz(ϕi)d]
1 + rpm(ϕi)rml(ϕi) exp [2ikz(ϕi)d]

∣∣∣∣2 , (10.26)

where rpm is the electric field reflectance at the prism–metal film interface,
rml is the corresponding reflectance at the metal–liquid interface, d is the
thickness (typically around 50 nm) of the metal film, and kz is the scalar
component of the wave vector normal to the metal film surface. The electric
field reflectances are

rpm =
kz,prism/εprism,r − kz,m/εmr

kz,prism/εprism,r + kz,m/εmr
, (10.27)

rml =
kz,m/εm,r − kz,liq/εliq,r

kz,m/εm,r + kz,liq/εliq,r
, (10.28)

where εprism,r, εm,r, and εliq,r are the dielectric functions of the prism, the
metal film, and the liquid, respectively. The wave number is defined as follows:

kzj =
[
εjr

(ω

c

)2
− k2

x

]1/2

, (10.29)

where
kx = ηprism

ω

c
sin ϕi. (10.30)

In the vicinity of the dip, the reflectance can be approximated by using a
Lorentzian line model [222, 223], which makes it possible to estimate the
dielectric function of the metal film, its thickness, and the uncertainties in
these estimates [224].

SPR for material research has turned out to be a very sensitive technique
to detect small changes in the refractive index of gaseous [225] and liquid
phases. Nowadays, there are various measurement techniques, which employ,
for instance, a grating configuration instead of a prism, in the detection of
physicochemical changes in media based on SPR. Thus SPR has proved to be
a valuable tool, for instance, in the analysis of dynamic biological interactions
[226,227]. A popular device, which is based on Kretschmann’s configuration,
exploits a flow cell that introduces on analyte solution, which passes through
the thin metal film of the prism [228]. The metal film is usually polymer-
coated and the adsorption of proteins onto the polymer film is monitored by
detection of time-dependent SPR.
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Matsubara et al. [229] introduced a device, which makes use of a con-
vergent light beam such that there is no need for rotating the prism. This
technique has also been exploited in commercial devices. The limitation of
such a method is that only a relatively narrow refractive index range can
usually be covered.

There is another technique also based on Kretschmann’s configuration
but characterized by keeping the angle of incidence fixed and scanning in-
stead the wavelength of the light [230], which makes it possible to attain
wavelength-dependent complex refractive index of liquids in the SPR mea-
surement mode. Saarinen et al. [231] developed an analytical method, which
allows calculations of the complex refractive index of a liquid using SPR re-
flectance by scanning the wavelength of light at a fixed angle of incidence. In
that scheme, the unknown wavelength-dependent complex dielectric function
of the liquid is obtained from the formulas above as follows:

εliq,r = εprism,r
kz,liq(1 − rpm)(1 − rml)

kz,prism(1 + rpm)(1 + rml)
. (10.31)

After some algebra (see the detailed derivation presented in the Appendix
of [231]), (10.31) can be put to into a more practical form:

εliq,r =
1
2
[
C + (C2 − 4Cεprism,r sin2 ϕi)

]
, (10.32)

where

C =
2π

λ

[
εprism,r(1 − rpm)(1 − rml)
kz,prism(1 + rpm)(1 + rml)

]
. (10.33)

The method is based on the application of the MEM phase retrieval pro-
cedure. In other words, the phase of the complex reflectance appearing in-
side the modulus, on the right-hand side of (10.26), is calculated from the
wavelength-dependent R. As an example of such a calculation, we present
a simulation of the optical properties of MG nanoparticles in a water ma-
trix [232]. The results of such calculations are shown in Fig. 10.5. The deep
dips in Fig. 10.5a present reflectance minima due to SPR for three different
volume fractions of nanoparticles. There are also shallow dips present in the
vicinity of 2.3 eV, which are due to absorption. In the simulation, the dielec-
tric function of water was known as a function of energy, and the dielectric
function of the inclusions was assumed to obey a single Lorentzian resonance,
as follows:

εi(ω) = ε∞ +
ω2

p

ω2
0 − ω2 − iγω

, (10.34)

where ε∞ is the high-frequency dielectric function and the other symbols
have their usual meanings. The MG model comes into the picture through
the application of (3.59). The ME phases, calculated by assuming five an-
chor points, are shown in Fig. 10.5b. The corresponding real and imaginary



10.2 The Maximum Entropy Method in Linear Optical Spectroscopy 125

Fig. 10.5. (a) SPR reflectances of an MG liquid with three different volume frac-
tions of inclusions, (b) the reconstructed true phases of reflectances with their MEM
estimates (symbols), (c) the real, and (d) imaginary parts of the effective dielectric
function of the medium (solid lines) along with their MEM estimates (symbols),
(e) the real, and (f) imaginary parts of the inclusions (solid lines) along with their
MEM estimates (symbols). The arrows in (b) show the frequencies at which the
refractive index of the host liquid is assumed to be known in order to estimate the
ME phases, which are represented by solid overlapping, almost linear, lines in (b).
The angle of incidence is 70◦, and the parameters are ε∞ = 2.5, ω2

p = 0.1 eV2,
ω0 = 2.3 eV, Γ = 0.1 eV. Reproduced from [232]
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parts of the effective dielectric function of the two-phase system are shown in
Fig. 10.5c,d, and finally the corresponding real and imaginary parts of the in-
clusions in Fig. 10.5e,f. The complex refractive index of the effective medium
and the nanoparticles can be calculated as well.

10.2.3 Misplacement Phase Error Correction
in Terahertz Time-Domain Spectroscopy

The recent development of ultrashort laser pulse technology has opened up a
new possibility of optically producing and detecting electromagnetic waves in
a time domain that corresponds to radiation in the terahertz (THz) frequency
range [233]. Among the various applications of THz radiation, terahertz time-
domain spectroscopy (THz-TDS) [234–236] has aroused great interest for its
capability in investigation of the intraband electron dynamics of semiconduc-
tors as well as the excitations in molecular systems.

In THz-TDS, THz radiation is typically generated via optical rectifica-
tion by applying a short near-infrared subpicosecond laser pulse to a non-
centrosymmetric material. The light pulses generated are then transmitted
or reflected by the sample. The change in the electric field intensity of the
pulses in the time domain is measured, and a Fourier transform is used to
obtain both the amplitude and phase of the THz light pulse in the frequency
domain. Thus, THz-TDS allows direct extraction of the complex refractive
index of a material from either transmission or reflection measurements with-
out K-K analysis. Since the transmission configuration of THz-TDS is limited
to transparent samples, THz-TDS in the reflection configuration is more ver-
satile, and for opaque samples, it is the only applicable method.

In practice, reflection data are obtained by dividing the Fourier transforms
of the time-domain electric field amplitudes reflected from the sample and a
reference mirror, respectively. Unfortunately, the phase measurement suffers
from experimental difficulties in placing a sample and a reference exactly in
the same position. Consequently, the displacement between the sample and
the reference gives rise to an optical path difference δL and thereby to a
relatively large frequency-dependent error into the obtained phase. Accord-
ingly, the correction of phase error is a crucial point in THz spectroscopy,
and various experimental techniques have been reported for minimizing the
error [234,236–238]. In contrast to these experimental techniques, a numeri-
cal method utilizing the MEM has been proposed to reveal the phase error
in THz-TDS and to simplify the experimental procedure [239].

If δL is nonzero, the measured phase function, θexp(ω), as a function of
angular frequency, is given by

θexp(ω) = θ(ω) + αω, (10.35)

where θ(ω) is the true phase, α = c−1δL is a phase error constant, and c is the
speed of light in vacuum. The main idea in using the MEM fitting of r(ω) for
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Fig. 10.6. (a) Measured THz reflectance (open squares) and the phase (dotted line)
with the corresponding Drude model reflectance (solid line). (b) The measured ME
error phase (open circles) and the corresponding simulated curves with (solid line)
and without (dotted line) the phase error. The squeezing parameter is set to K = 0.
In the simulation, the phase error constant is set to α = 0.42. (c) The same as in
(b), but with K = 1. (d) Experimental derivatives dφexp(ω; K)/dω with K = 0
(open circles) and K = 1 (dots) revealing the phase error constant α and, thereby,
(e) the phase correction. Solid lines are uncorrected and corrected phase measure-
ments. The dotted line shows the phase obtained by the Kramers-Kronig analysis,
where the reflectance was extrapolated with the Drude model. (f) Determined com-
plex dielectric function, εzz (dots), and the corresponding calculation by the Drude
model (solid lines). Reproduced from [239]
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the phase correction in the context of THz-TDS lies in the phase decomposi-
tion, θ(ω) = φ(ω)+ψ(ω), which arises from the MEM fit of r(ω). Since ψ(ω)
depends only on reflectance R(ω), it does not exhibit the misplacement phase
error. Therefore, the MEM fitting of r(ω) yields the same phase error in φ(ω)
as in the measured phase θexp(ω), i.e., φexp(ω) = φ(ω) + αω. The frequency
dependence of φ(ω) in the THz range is typically quite weak compared to
the phase error term αω (see Fig. 10.6c). This usually enables direct extrac-
tion of the phase error constant α, e.g., from the derivative dφexp(ω)/dω, as
demonstrated in Fig. 10.6d. After α is obtained, the true phase ϕ (Fig. 10.6e)
as well as the dielectric function εzz (Fig. 10.6f) can be easily derived.

10.3 The Maximum Entropy Method
in Nonlinear Optical Spectroscopy

We have already given the tools that allow us to perform phase retrieval
from measured data by the MEM. The mathematical machinery of the MEM
can also be directly applied in the case of data inversion of nonlinear op-
tical spectra. Vartiainen [206] proposed the application of the MEM in the
context of nonlinear optical spectra. Indeed, phase retrieval from a coherent
anti-Stokes Raman scattering spectrum (CARS) of the nitrogen Q-branch
using the squeezing technique yielded information on the real and imaginary
parts of third-order nonlinear susceptibility. Here we consider three typical
examples. The first is related to holomorphic nonlinear susceptibility, i.e. the
third-order susceptibility of harmonic-wave generation, while the others are
related to meromorphic degenerate third-order nonlinear susceptibility and
total reflectivity, respectively.

The first example is related to polysilane, with which we have already been
dealing in the context of K-K relations. Here we consider only the comparison
between the MEM and K-K methods. More detailed results can be found in
[206]. In Fig. 10.7a,b, we show the real and imaginary parts of the third-order
harmonic susceptibility of polysilane retrieved by two alternative methods.
The MEM curves were computed by estimating the error phase with first-
order (L = 1) and third-order (L = 3) polynomials. We can observe that the
two MEM estimates give, practically speaking, identical curves. Furthermore,
if we compare K-K and MEM, we observe that the curves resemble each
other very much. However, K-K analysis could not reproduce the two-photon
resonance peak at 2.1 eV. In both analyses, the phase data were required for
two wavelengths. The significant difference was that in the MEM, the anchor
points were inside the measured range, whereas in the K-K analysis, they
were outside the measured range.

The second example is a simulation related to the effective degenerate
third-order nonlinear susceptibility of a MG two-phase nanocomposite. In
the simulation, the host material is assumed to respond linearly to intense
light, whereas the inclusions are assumed to have a nonlinear response. In
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Fig. 10.7. Experimental values (dots and open circles) of (a) real and (b) imaginary
parts of susceptibility χ(3)(ω; ω, ω, −ω) of polydihexylsilane, and the corresponding
curves obtained by Kramers-Kronig analysis (dotted lines) and by the MEM pro-
cedure (solid lines). The additional information used for MEM estimates with L =
1 was the two phase values indicated by the arrows. Reproduced from [206]

such a case the effective nonlinear susceptibility can be found with the aid of
(5.37)–(5.41) as follows:

χ
(3)
eff (ω; ω, ω, −ω) =f

∣∣∣∣εeff(ω) + 2εh(ω)
εi(ω) + 2εh(ω)

∣∣∣∣2 [εeff(ω) + 2εh(ω)
εi(ω) + 2εh(ω)

]2

× χ
(3)
i (ω; ω, ω, −ω),

(10.36)

where we assume that

χ
(3)
i (ω; ω, ω, −ω) =

B

|ω2
0 − ω2 − iγω|2 (ω2

0 − ω2 − iγω)2
, (10.37)

and B is a constant. We next resolve the real and imaginary parts from the
modulus of the effective degenerate nonlinear susceptibility by the MEM. In
the case of the four chosen anchor points, the results are shown in Fig. 10.8.
K-K relations cannot be used in a problem like this since they result in
erroneous data inversions (see [15]).

The third example is devoted to meromorphic total reflectance. In other
words, once again we have meromorphic third-order nonlinear susceptibility,
but this time, we assume that the system involves a two-phase Bruggeman
liquid. This means that we consider the expression (5.42) and assume that
only the nanoparticles are optically nonlinear with a susceptibility given by
(10.37), whereas the liquid matrix is optically linear. As usual, the opti-
cal properties of the Bruggeman as well as of other liquids can be searched
through a probe window. However, in the case of intense light obtained from
a tunable dye laser, the reflected light has linear and nonlinear contributions.
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Fig. 10.8. (a) Squared modulus of the effective nonlinear susceptibility of Maxwell
Garnett material. Real (b) and imaginary (c) parts obtained by the MEM proce-
dure, where additional information about the phase is assumed to be known for
four equispaced frequencies (arrows). Reproduced from [15]
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Fig. 10.9. (a) Effective total reflectance R = |r̂tot
eff |2; (b) maximum entropy phase

(line curves) and corresponding linear approximate (dots); (c) real, and (d) imag-
inary part of the total reflectivity r̂tot

eff (line curves), and the corresponding MEM
estimates (dots). The arrows in (b) indicate the frequencies at which the phase
values were to be known a priori. A=10, ω0 = 3 × 1015 s−1, B = 1, εp = 2.25, and
I = |E|2 = 10 (which corresponds to a true field strength E = 109 V/m). Solid
lines: fb = 0.1. Dashed lines: fb = 0.3. Dash-dotted lines: fb = 0.5. Reproduced
from [71]

Therefore we have to consider the total reflectance since both the linear and
nonlinear contributions have the same angular frequency and propagate spa-
tially along the same path to the detector system. Now in the case of normal
light incidence, in internal reflection, the total reflectance is as follows:

R(ω) =

∣∣∣∣∣1 −√
εtot
eff (ω)/εp(ω)

1 +
√

εtot
eff (ω)/εp(ω)

∣∣∣∣∣ , (10.38)

where εp is the dielectric function of the probe window and

εtot
eff = ε

(1)
eff + χ

(3)
eff I, (10.39)

where I is the intensity of light. We show in Fig. 10.9 the results of the MEM
analysis where the real and imaginary parts of total reflectance have been
resolved for the cases of two anchor points and three different fill fractions of
the nanofeatures.
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The purpose of this book has been to highlight the relevance of the general
integral properties of susceptibility functions for the inspection of the linear
and nonlinear optical properties of materials. The conceptual foundation of
the general integral properties set forth is the principle of causality in light–
matter interaction. The bridge between the causality of the physical system
and the holomorphic properties of the susceptibilities analyzed, which deter-
mine the possibility of writing the integral relations, is Titchmarsch’s theorem
in the case of linear optics and Scandolo’s theorem in the nonlinear case. We
have shown that, in all generality, such general properties only depend on the
expectation value of suitable operators in the ground state of the electronic
density matrix densities, with appropriate modifications to account for local
field effects and for inhomogeneous media. Moreover, since we have adopted
a rather general quantum mechanical framework, these results are derived
for any physical system.

In the case of linear optics, we have reviewed in great detail the theoret-
ical derivation and the actual experimental use of Kramers-Kronig relations
for susceptibility as well as for the relevant optical constants, reflectance and
index of refraction. We have also shown how, using the superconvergence the-
orem on such dispersion relations and comparing the results with the correct
asymptotic behavior obtained from quantum response theory, it is possible to
derive sum rules, which constitute stringent constraints having profound rel-
evance in the interpretation of both model-generated and experimental data.
We have also shown how these linear integral properties are changed when
conductors are considered.

In the nonlinear case, the susceptibility functions that have a holomor-
phic character in the half complex plane of the relevant frequency variable are
shown to obey a number of dispersion relations between their real and imagi-
nary parts. The important cases of pump-and-probe systems and of harmonic-
generation processes are analyzed in detail and new Kramers-Kronig rela-
tions are given for susceptibilities and their powers. In general, the number
of Kramers-Kronig type relations depends on the asymptotic behavior of
nonlinear susceptibility for large values of the relevant frequency variable.
Subtractive Kramers-Kronig relations are derived to improve the retrieval
process.
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Using the superconvergence theorem on such dispersion relations and
comparing the results with the correct asymptotic behavior obtained from
quantum response theory, new sum rules are obtained for nonlinear suscep-
tibilities to any order. The sum rules can be used to check any approximate
theory of nonlinear phenomena, because they are necessary constraints which
have to be obeyed. In the case of harmonic-generation susceptibilities, such
sum rules have the common features that all even moments of the real part
and all odd moments of the imaginary parts are null, except for the highest
converging odd moment of the imaginary part of the susceptibility, which
gives a result dependent on the expectation value in the ground state of ap-
propriate derivatives of the potential. This gives a qualitative measure of the
optical nonlinearity of the material.

Kramers-Kronig type relations are shown to be useful for data inversions,
required because in most materials only one optical function can be measured
and the range of frequency attainable is rather narrow. Specific examples of
the application of conventional, generalized, and subtractive Kramers-Kronig
relations as well as of verification of sum rules are given for experimental data
on third-harmonic-generation in polymers. In a relevant example of second-
harmonic-generation, it is shown that sum rules allow of better understanding
of Miller’s rule and provide tools for explaining critical experimental param-
eters.

Therefore, by analyzing actual experimental data, we have shown that, far
from being somewhat cumbersome and fictitious theoretical findings, these
integral properties have a huge potential for providing new tools for pro-
found, self-consistent analysis of a new generation of experimental and model-
generated data concerned with nonlinear optical processes. Integral relations
form the best language for use in speaking about frequency-dependent non-
linear optical phenomena. We believe that the role of dispersion theory and
sum rules will be of increasing importance in the expanding field of nonlinear
optics.

In the case of meromorphic nonlinear susceptibility, conventional K-K re-
lations have to be modified. By taking into account the poles that are located
in the upper half plane, we derive modified K-K relations and sum rules for
meromorphic nonlinear susceptibilities. Furthermore, by applying a partial
fraction to the poles, we observe new practical sum rules for meromorphic
nonlinear susceptibilities such as at describing degenerate four-wave mixing.

Unfortunately, in linear reflectance and in most measurements of non-
linear susceptibility, only the intensity data on the measured quantity are
available. Thus, a phase retrieval problem arises. Both multiply-subtractive
K-K relations and the MEM procedure are alternative methods that can be
applied both for linear reflectance and for the modulus of nonlinear suscepti-
bility. Furthermore, they can be exploited for finite frequency data analysis.
Unfortunately, for meromorphic nonlinear susceptibilities, the conventional
K-K analysis is not valid. However, the MEM can be exploited for phase re-
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trieval both for linear and nonlinear susceptibilities, including phase retrieval
from nanostructures.

Given the very abstract nature of the physical problem we have exam-
ined, at least in theoretical terms, and given that we set out with the aim of
providing a unifying picture, we have followed a wholly deductive argumen-
tation, progressing from linear to nonlinear, from the general to the specific,
and from the theoretical to the experimental. Within a single perspective,
we have framed many results that have otherwise been sparsely presented
in the literature, and we have proposed new theoretical tools for investiga-
tion. We hope that this effort will form a baseline for future theoretical and
experimental research in wide spectral range nonlinear optical investigation.



A MATLAB� Programs for Data Analysis

In this appendix, we present some basic programs written for the MAT-
LAB� environment for the analysis of the data. These programs can be
easily customized by the expert user, but they nevertheless constitute useful
data analysis tools also in the present form.

The first two programs deal with the computation of K-K relations. The
third program can be used to obtain self-consistent (in terms of K-K relations)
estimates of the real and the imaginary parts of susceptibility when first-
guess estimates are used as input. It is particularly suitable when the first-
guess estimates of the real and imaginary parts of susceptibility have been
independently obtained, e.g. by direct measurements. The fourth and the
fifth program deal with the computation of SSKK relations.

In order to take advantage of this set of programs, and considering that
the first two programs are called by the last three programs, it is strongly
advised to save them in the same directory with the following names:

– Program 1: kkimbook.m;
– Program 2: kkrebook.m;
– Program 3: selfconsbook.m;
– Program 4: sskkimbook.m;
– Program 5: sskkrebook.m.

These programs require that the spectral data given as input have con-
stant frequency spacing. Simple interpolation schemes can in most cases ef-
ficiently rearrange diversely spaced data to this form. These programs have
been tested on the MATLAB� versions 6.x both for Linux/Unix� and Mi-
crosoft Windows� environments.

A.1 Program 1: Estimation of the Imaginary Part
via Kramers-Kronig Relations

function imchi=kkimbook(omega,rechi,alpha)
%The program inputs are 1) omega, vector of the frequency
%(or energy) components, 2) rechi, vector of the real part
%of the susceptibility under examination, 3) alpha, value
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%of the moment considered. The two vectors 1) and 2)
%must have the same length. The output is the estimate
%of the imaginary part as obtained with K-K relations.
%In order to use this program, save the whole text contained
%in this section in a file and name it kkimbook.m

if size(omega,1)>size(omega,2);
omega=omega’;

end; if size(rechi,1)>size(rechi,2);
rechi=rechi’;

end;
%Here the program rearranges the two vectors so that,
%whichever their initial shape, they become row vectors.

g=size(omega,2);
%Size of the vectors.%

imchi=zeros(size(rechi));
%The output is initialized.

a=zeros(size(rechi));
b=zeros(size(rechi));
%Two vectors for intermediate calculations are initialized

deltaomega=omega(2)-omega(1);
%Here we compute the frequency (or energy) interval

j=1;
beta1=0;
for k=2:g;

b(1)=beta1+rechi(k)*omega(k)ˆ(2*alpha)/(omega(k)ˆ2-omega(1)ˆ2);
beta1=b(1);

end;
imchi(1)=-2/pi*deltaomega*b(1)*omega(1)ˆ(1-2*alpha);
%First element of the output: the principal part integration
%is computed by excluding the first element of the input

j=g;
alpha1=0;
for k=1:g-1;

a(g)=alpha1+rechi(k)*omega(k)ˆ(2*alpha)/(omega(k)ˆ2-omega(g)ˆ2);
alpha1=a(g);

end;
imchi(g)=-2/pi*deltaomega*a(g)*omega(g)ˆ(1-2*alpha);
%Last element of the output: the principal part integration
%is computed by excluding the last element of the input.

for j=2:g-1; ;
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%Loop on the inner components of the output vector.
alpha1=0;
beta1=0;
for k=1:j-1;

a(j)=alpha1+rechi(k)*omega(k)ˆ(2*alpha)/...
(omega(k)ˆ2-omega(j)ˆ2);

alpha1=a(j);
end;
for k=j+1:g;

b(j)=beta1+rechi(k)*omega(k)ˆ(2*alpha)/...
(omega(k)ˆ2-omega(j)ˆ2);

beta1=b(j);
end;
imchi(j)=-2/pi*deltaomega*(a(j)+b(j))*omega(j)ˆ(1-2*alpha);

end;
%Last element of the output: the principal part integration
%is computed by excluding the last element of the input

A.2 Program 2: Estimation of the Real
via Kramers-Kronig Relations

function rechi=kkrebook(omega,imchi,alpha)
%The program inputs are 1) omega, vector of the frequency
%(or energy) components, 2) imchi, vector of the imaginary
%part of the susceptibility under examination, and 3) alpha,
%the value of the moment considered. The two vectors
%1) and 2) must have the same length.
%The output is the estimate of the real part as obtained
%with K-K relations.
%In order to use this program, save the whole text contained
%in this section in a file and name it kkrebook.m

if size(omega,1)>size(omega,2);
omega=omega’;

end; if size(imchi,1)>size(imchi,2);
imchi=imchi’;

end;
%Here the program rearranges the two vectors so that,
%whichever their initial shape, they become row vectors.

g=size(omega,2);
%Size of the vectors.%

rechi=zeros(size(imchi));
%The output is initialized.

a=zeros(size(imchi));
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b=zeros(size(imchi));
%Two vectors for intermediate calculations are initialized

deltaomega=omega(2)-omega(1);
%Here we compute the frequency (or energy) interval

j=1;
beta1=0;
for k=2:g;

b(1)=beta1+imchi(k)*omega(k)ˆ(2*alpha+1)/...
(omega(k)ˆ2-omega(1)ˆ2);

beta1=b(1);
end;
rechi(1)=2/pi*deltaomega*b(1)*omega(1)ˆ(-2*alpha);
%First element of the output: the principal part integration
%is computed by excluding the first element of the input

j=g;
alpha1=0;
for k=1:g-1;

a(g)=alpha1+imchi(k)*omega(k)ˆ(2*alpha+1)/...
(omega(k)ˆ2-omega(g)ˆ2);

alpha1=a(g);
end;
rechi(g)=2/pi*deltaomega*a(g)*omega(g)ˆ(-2*alpha);
%Last element of the output: the principal part integration
%is computed by excluding the last element of the input

for j=2:g-1; ;
%Loop on the inner components of the output vector.

alpha1=0;
beta1=0;
for k=1:j-1;

a(j)=alpha1+imchi(k)*omega(k)ˆ(2*alpha+1)/...
(omega(k)ˆ2-omega(j)ˆ2);

alpha1=a(j);
end;
for k=j+1:g;

b(j)=beta1+imchi(k)*omega(k)ˆ(2*alpha+1)/...
(omega(k)ˆ2-omega(j)ˆ2);

beta1=b(j);
end;
rechi(j)=2/pi*deltaomega*(a(j)+b(j))*omega(j)ˆ(-2*alpha);

end;
%Last element of the output: the principal part integration
%is computed by excluding the last element of the input
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A.3 Program 3: Self-Consistent Estimate of the Real
and Imaginary Parts of Susceptibility

function [refin,imfin]=selfconsbook(omega,rechi,imchi,N,mu)
%The program inputs are 1) omega, vector of the frequency (or
%energy) vector, 2) rechi, vector of the first-guess real part
%of the susceptibility under examination 3) imchi, vector of
%the first-guess imaginary part of the susceptibility under
%examination, 4) N, number of iterations, and 5) mu, weight factor,
%which must be between 0 and 1 (0.5 is usually a good choice).
%mu determines the weight we want to give to the first-guess
%estimates in the self-consistent procedure. The three vectors
%1), 2) and 3) must have the same length.
%The output consists of the self-consistent estimates of
%the real and of the imaginary part as obtained by
%combining recursively first-guess estimates and outputs
%of K-K relations.
%In order to use this program, save the whole text contained
%in this section in a file and name it selfconsbook.m

if size(omega,1)>size(omega,2);
omega=omega’;

end;
if size(rechi,1)>size(rechi,2);

rechi=rechi’;
end;
if size(imchi,1)>size(imchi,2);

imchi=imchi’;
end;
%Here the program rearranges the three vectors so that,
%whichever their initial shape, they become row vectors.

comodo1=rechi;
comodo2=imchi;
%Here the program defines two intermediate variables.

for j=1:N;
comodo1=kkrebook(omega,comodo2,0);
comodo1=(mu*rechi+(1-mu)*comodo1);
comodo2=kkimbook(omega,comodo1,0);
comodo2=(mu*imchi+(1-mu)*comodo2);

end;
%At each step the program computes the best estimate
%of the real and imaginary part by combining application
%of K-K relations with actual measurements.
refin=comodo1;
imfin=comodo2;
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A.4 Program 4: Estimation of the Imaginary Part
via Singly Subtractive Kramers-Kronig Relations

function imchi=sskkimbook(omega,rechi,omega1,imchi1,alpha)
%The program inputs are 1) omega, vector of the frequency
%(or energy) components, 2) rechi, vector of the real
%part of the susceptibility under examination, 3) omega1,
%anchor point, 4) imchi1, value of the imaginary part at
%the anchor point, 5) alpha, value of the moment considered.
%The two vectors 1) and 2) must have the same length.
%The output is the estimate of the
%imaginary part as obtained by using SSKK relations.
%In order to use this program, save the whole text contained
%in this section in a file and name it sskkimbook.m

if size(omega,1)>size(omega,2);
omega=omega’;

end; if size(rechi,1)>size(rechi,2);
rechi=rechi’;

end;
%Here the program rearranges the two vectors so that,
%whichever their initial shape, they become row vectors.

g=size(omega,2);
%Size of the vectors.%

k=0;
for j=1:g;

if omega(j)==omega1;
k=j;

end;
end;
%Determination of the anchor point.

imchi=kkimbook(omega,rechi,alpha);
%Application of K-K relations

imchi=imchi+omega1ˆ(2*alpha-1)*omega.ˆ(1-2*alpha)*(imchi1-imchi(k));
%The subtracted relation upgrades the estimate obtained
%with K-K relations.



A.5 Program 5: Estimation of the Real Part 143

A.5 Program 5: Estimation of the Real Part
via Singly Subtractive Kramers-Kronig Relations

function rechi=sskkrebook(omega,imchi,omega1,rechi1,alpha)
%The program inputs are 1) omega, vector of the
% frequency (or energy) components, 2) imchi, vector of
%the imaginary part of the susceptibility
%under examination, 3) omega1, anchor point, 4) rechi1,
%value of the real part at the anchor point, 5) alpha,
%value of the moment considered.
%The two vectors 1) and 2) must have the same length.
%The output is the estimate of the
%real part as obtained by using SSKK relations.
%In order to use this program, save the whole text contained
%in this section in a file and name it sskkrebook.m

if size(omega,1)>size(omega,2);
omega=omega’;

end; if size(imchi,1)>size(imchi,2);
rechi=rechi’;

end;
%Here the program rearranges the two vectors so that,
%whichever their initial shape, they become row vectors.

g=size(omega,2);
%Size of the vectors.%

k=0; for j=1:g;
if omega(j)==omega1;

k=j;
end;

end;
%Determination of the anchor point.

rechi=kkrebook(omega,imchi,alpha);
%Application of K-K relations

rechi=rechi+omega1ˆ(2*alpha)*omega.ˆ(-2*alpha)*(rechi1-rechi(k));
%The subtracted relation upgrades the estimate obtained
%with K-K relations.
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gresso Internazionale dei Fisici, Vol. 2 (Zanichelli, Bologna, 1927), pp. 545–
557.

5. R. de L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am.
12, 547–557 (1926).
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57. P. Chýlek and G. Videen, “Scattering by a composite sphere and effective
medium approximations,” Opt. Commun. 146, 15–20 (1998).

58. R. Ruppin, “Evaluation of extented Maxwell-Garnett theories,” Opt. Com-
mun. 182, 273–279 (2000).

59. R. W. Boyd, R. J. Gehr, G. L. Fischer, and J. E. Sipe, “Nonlinear optical
properties of nanocomposite materials,” Pure Appl. Opt. 5, 505–512 (1996).

60. D. Prot, D. B. Stroud, J. Lafait, N. Pinçon, B. Palpant, and S. Debrus, “Lo-
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