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1

Review and Comparison of the
Main Interferometric Systems

1.1 TWO-WAVE INTERFEROMETERS 
AND CONFIGURATIONS 
USED IN OPTICAL TESTING

Two-wave interferometers produce an interferogram by
superimposing two wavefronts, one of which is typically a flat
reference wavefront and the other a distorted wavefront
whose shape is to be measured. The literature (e.g., Malacara,
1992; Creath, 1987) provides many descriptions of interfer-
ometers; here, we will just describe some of the more impor-
tant aspects.

An interferometer can measure small wavefront defor-
mations with a high accuracy, of the order of a fraction of the
wavelength. The accuracy in a given interferometer depends
on many factors, such as the optical quality of the components,
the measuring methods, the light source properties, and dis-
turbing external factors, such as atmospheric turbulence and
mechanical vibrations. It has been shown by Kafri (1989),
however, that the accuracy of any interferometer is limited.
He proved that, if everything else is perfect, a short coherence
length and a long sampling time can improve the accuracy.
Unfortunately, a short coherence length and long measuring



time combined make the instrument more sensitive to
mechanical vibrations. In conclusion, the uncertainty princi-
ple imposes a fundamental limit to the accuracy that depends
on several parameters but is of the order of 1/1000 of the
wavelength of the light.

To study the main principles of interferometers, let us
consider a two-wave interferogram with a flat wavefront that
has a positive tilt about the y-axis and a wavefront under
analysis, for which the deformations with respect to a flat
wavefront without tilt are given by W(x,y). This tilt is said to
be positive when the wavefront is as shown in Figure 1.1. The
complex amplitude in the observation plane, where the two
wavefronts interfere, is the sum of the complex amplitudes of
the two waves as follows:

(1.1)

where A1 is the amplitude of the light beam at the wavefront
under analysis, A2 is the amplitude of the light beam with the
reference wavefront, and k = 2π/λ. Hence, the irradiance is:

(1.2)

Figure 1.1 Two interfering wavefronts.
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where the symbol * denotes the complex conjugate of the
electric field. Here, we have introduced optional tilt θ about
the y-axis between the two wavefronts. The irradiance func-
tion, I(x,y), may then be written as:

(1.3)

where I1(x,y) and I2(x,y) are the irradiances of the two beams,
and the phase difference between them is given by φ = k(xsinθ
– W(x,y)). This function is shown graphically in Figure 1.2.

For convenience, Equation 1.3 is frequently written as:

(1.4)

Assuming that the variations in the values of a(x,y) and b(x,y)
inside the interferogram aperture are smoother than the vari-
ations of the cosine term, the maximum irradiance in the
vicinity of the point (x,y) in this interferogram is given by:

(1.5)

and the minimum irradiance in the same vicinity is given by:

Figure 1.2 Irradiance as a function of phase difference between
the two waves along the light path.
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(1.6)

The fringe visibility, v(x,y), is defined by:

(1.7)

Hence, we may find:

(1.8)

Using the fringe visibility, Equation 1.3 is sometimes also
written as:

(1.9)

where I0(x,y) = a(x,y) is the irradiance for a fringe-free field,
when the two beams are incoherent to each other. This irra-
diance, as a function of the phase difference between the two
interfering waves, is shown in Figure 1.2.

Several basic interferometric configurations are used in
optical testing procedures, but almost all of them are two-
wavefront systems. Both wavefronts come from a single light
source, separated by amplitude. Furthermore, most modern
interferometers use a helium–neon laser as the light source.
The main advantage of using a laser as the source of light is
that fringe patterns may be easily obtained because of the
great coherence of the laser. In fact, this advantage can also
be a serious disadvantage, as spurious diffraction patterns
and secondary fringe patterns are easily obtained. Special
precautions must be taken into account to achieve a clean
interference pattern. In this chapter, we review some of these
interferometers, but greater detail about these systems may
be found in many books (e.g., Malacara, 1992).
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1.2 TWYMAN–GREEN INTERFEROMETER

The basic configuration of the Twyman–Green interferometer,
invented by F. Twyman and A. Green (Twyman, 1918), is
illustrated in Figure 1.3. The fringes in a Twyman–Green
interferometer are of equal thickness. The light from the laser
is expanded and collimated by means of a telescopic system
that usually includes a microscope objective and collimator.
To obtain a clean wavefront, without diffraction rings on the
field, the optical components must be as clean as possible. For
an even cleaner beam, a spatial filter (pinhole) may be used
at the focal plane of the microscope objective. The quality of
the wavefront produced by this telescope does not need to be
extremely high, because its deformations will appear on both
interfering wavefronts and not produce any fringe deviations.
If the optical path difference between both interfering beams
is large, the tolerance on the wavefront deformations in the
illuminating telescope may be drastically reduced; in this
case, the illuminating wavefront must be quite flat, within a
fraction of the wavelength.

If the beam splitter is nonabsorbing, the main interfer-
ence pattern is complementary to the one returning to the
source, due to the conservation of energy principle, even

Figure 1.3 Basic configuration in a Twyman–Green interferometer.
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though the optical path difference is the same for both pat-
terns. Phase shifts upon reflection on dielectric interfaces may
explain this complementarity.

The beam splitter must be of high quality with regard
not only to its surfaces but also to the material, which must
be extremely homogeneous. The reflecting surface must be of
the highest quality — flat, with an accuracy of about twice
the required interferometer accuracy. The quality of a nonre-
flecting surface may be relaxed by a factor of four with respect
to a reflecting face. To prevent spurious interference fringes,
the nonreflecting surface must not reflect any light. One way
to accomplish this is by coating the surface with an anti-
reflection multilayer coating. Another possible method is for
the beam splitter to have an incidence angle equal to the
Brewster angle and which properly polarizes the incident
light beam; however, this solution substantially increases the
size of the beam splitter, making it more difficult to construct
and hence more expensive.

Many different optical elements may be tested using a
Twyman–Green interferometer, as described by Malacara
(1992). For example, a plane-parallel plate of glass may be
tested as shown in Figure 1.4a. The optical path difference
(OPD) introduced by this glass plate is:

(1.10)

where n is the refractive index and t is the plate thickness.
The interferometer is first adjusted so no fringes are observed
before introducing the plate into the light beam, thus ensuring
that all fringes that appear are due to the plate. If the field
remains free of fringes after introducing the plate, we can say
that the quantity (n – 1)t is constant over the entire plate
aperture. If the fringes are straight, parallel, and equidistant
and we may assume that the glass is perfectly homogeneous
so that n is constant, then the fringes are produced by a small
angle between the two flat faces of the plate. If the fringes are
not straight but are distorted, we may conclude that either the
refractive index is not constant or the surfaces are not flat, or
both. We can only be sure that (n – 1)t is not constant. To

OPD = −2 1( )n t



measure the n and t separately, we must augment the results
from this test with another measurement made in a Fizeau
interferometer, which measures the values of nt.

The optical arrangements in Figure 1.4b can be used to
test a convergent lens. A convex spherical mirror with its
center of curvature at the focus of the lens is used for lenses
with long focal lengths, and a concave spherical mirror is used
for lenses with short focal lengths. A small, flat mirror located
at the focus of the lens can also be employed. The portion of
the flat mirror being used is so small that its surface does not
need to be very accurate; however, the wavefront is rotated
180°, thus the spatial coherence requirements are stronger
and odd aberrations are canceled out. 

Concave or convex optical surfaces may also be tested
using a Twyman–Green interferometer with the configura-
tions shown in Figure 1.5. Even large astronomical mirrors
can be tested. For this purpose, an unequal-path interferom-
eter for optical shop testing was designed by Houston et al.
(1967). When the beam-splitter plate is at the Brewster angle,
it has a wedge angle of 2 to 3 arc min between the surfaces.
The reflecting surface of this plate is located to receive the
rays returning from the test specimen in such a way as to

Figure 1.4 Testing a glass plate and a lens in a Twyman–Green
interferometer.
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preclude astigmatism and other undesirable effects. A two-
lens beam diverger can be placed in one arm of the interfer-
ometer. It is made of high-index glass with all the surfaces
being spherical and has the capability for testing a surface
as fast as f/1.7.

1.3 FIZEAU INTERFEROMETERS

Like the Twyman–Green interferometer, the Fizeau interfer-
ometer is a two-beam interferometer with fringes of equal
thickness (see Figure 1.6). The optical path difference (OPD)
introduced when testing a plane-parallel glass plate placed
in the light beam is:

(1.11)

which, as we may notice, is different from the corresponding
expression for the Twyman–Green interferometer. In this
sense, the two interferometers are complementary, so that the

Figure 1.5 Twyman–Green interferometer configurations to test
a convex or concave optical surface.
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constancy of thickness t and refractive index n may be tested
only when both interferometers are used.

A large concave optical surface may also be tested with
a Fizeau interferometer, as shown in Figure 1.7. If the concave
surface is aspherical, the spherical aberration may be com-
pensated if the converging lens has the opposite aberration.
The reference surface is placed between the collimator and
the converging lens.

Figure 1.6 Basic Fizeau interferometer configuration.

Figure 1.7 Fizeau interferometer to test a concave surface using a
flat reference surface.
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When the reference surface is flat, as in Figure 1.7, no
off-axis configuration appears when the concave mirror under
analysis is tilted to introduce many tilt fringes (linear carrier).
A perfect focusing lens is required, however, because the lens
is located inside the cavity; thus, the wavefront under analysis
passes through this lens but not the reference wavefront. Any
error in the focusing lens will be apparent in the interferogram.
A second possible source of errors appears when a flat refer-
ence is used. In this case, the reference wavefront returns to
the collimator lens at an angle with respect to the optical axis,
and the collimator has to be corrected for some field angle.

As shown in Figure 1.8, a spherical reference surface is
sometimes used. In this case, the linear carrier can be intro-
duced by tilting the concave sphere under analysis or the
reference sphere. This arrangement prevents the presence of
any optical elements inside the interferometer cavity, between
the reference surface and the surface being analyzed, thus
relaxing the requirements for good focusing and collimating
optics. These lenses still have to be corrected for some small
field angle, but their degree of correction does not need to be
very high. Even better, if the whole optical system formed by
the focusing lens and the collimator is made symmetrical,

Figure 1.8 Fizeau interferometer to test a concave surface using
a concave reference surface.
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correction of the coma aberration is automatic. In such a con-
figuration, some wavefront aberrations may appear when the
linear carrier is introduced, due to the large tilt in the spherical
mirror, in addition to the well-known primary astigmatism.

With this arrangement, an off-axis configuration results
when a large tilt is applied to an interferometer to introduce
a linear carrier with more than 200 fringes in the interfero-
gram (Kuchel, 1990). The linear carrier is obtained by tilting
the reference. The surface being tilted may be the concave
mirror under analysis or the spherical reference. We have
seen that, in addition to introduction of the primary astig-
matic aberration (due to off-axis testing), spherical and high-
order (ashtray) astigmatism is also generated; however, we
may see that even for a large number of fringes the wavefront
aberration remains small for all practical purposes so we may
introduce as many fringes as desired.

Another source of wavefront errors in the spherical cavity
configuration, when testing a high-aperture optical element,
may be introduced by large axial displacements of the concave
surface under analysis with respect to the spherical reference
sphere. In addition to the expected defocusing, a spherical
aberration is introduced in the wavefront. A common varia-
tion of the Fizeau interferometer is the Shack–Fizeau inter-
ferometer (Figure 1.9), which is used to test a large concave
surface with a spherical reference surface.

1.4 TYPICAL INTERFEROGRAMS IN 
TWYMAN–GREEN AND FIZEAU 
INTERFEROMETERS

Interferograms produced by the primary aberrations have been
described by Kingslake (1925–1926). A wavefront with primary
aberrations, as measured with respect to a sphere with its
center of curvature at the Gaussian image point, is given by:

(1.12)
W x y A x y By x y C x y

D x y Ex Fy G

( , ) = +( ) + +( ) + −( ) +

+ +( ) + + +

2 2 2 2 2 2 2

2 2



where:

A = spherical aberration coefficient.
B = coma coefficient.
C = astigmatism coefficient.
D = defocusing coefficient.
E = tilt about the y-axis coefficient (image displacement

along the x-axis).
F = tilt about the x-axis coefficient (image displacement

along the y-axis).
G = piston or constant term.

This expression may also be written in polar coordinates (θ, ρ).
For simplicity, when computing typical interferograms of pri-
mary aberrations, a normalized entrance pupil with unit
semidiameter can be taken. Some typical interference pattern
are shown in Figure 1.10; a more complete set of illustrations
may be found in Malacara (1992).

Diagrams of typical interferograms can be simulated in
a computer using beams of fringes of equal inclination on a

Figure 1.9 Shack–Fizeau interferometer.
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Michelson interferometer (Murty, 1964) using the OPDs intro-
duced by a plane-parallel plate and cube-corner prisms instead
of mirrors, or by electronic circuits on a cathode ray tube (CRT)
(Geary et al., 1978; Geary, 1979).

Twyman–Green interferograms were analyzed by Kingslake
(1925–1926) by measuring the optical path difference at sev-
eral points using fringe sampling. Then, solving a system of
linear equations, he computed the OPD coefficients A, B, C,
D, E, and F. Another similar method for analyzing a Twyman–
Green interferogram was proposed by Saunders (1961). He
found that the measurement of nine appropriately chosen
points is sufficient to determine any of the three primary
aberrations. The points were selected as shown in Figure 1.11,
and the aberration coefficients were calculated with:

Figure 1.10 Some Twyman–Green interferograms.
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(1.13)

(1.14)

and

(1.15)

where Wi is the estimated wavefront deviation at the point I.
The aberration coefficients can be determined by direct

reading on the interferogram setting, looking for interference
patterns with different defocusing settings and tilts. Vazquez-
Montiel et al. (2002) have developed a method to determine
the wavefront deformation for these primary aberrations from
the interferogram using an iterative trial-and-error method
which they refer to as an evolution strategy.

1.5 LATERAL SHEAR INTERFEROMETERS

A lateral shear interferogram does not require any reference
wavefront; instead, the interference takes place between two
identical aberrated wavefronts, laterally sheared with respect
to each other as shown in Figure 1.12. The optical path dif-
ference is:

Figure 1.11 Selected points for evaluation of primary aberrations.
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(1.16)

where S is the lateral shear in the sagittal (x) direction.
Let us now assume that lateral shear S is sufficiently

small such that the wavefront slopes in the x direction may
be considered almost constant in an interval S. This is equiv-
alent to the condition when the fringe spatial frequency in
the x direction is almost constant in an interval S. Then, we
may expand in a Taylor series to obtain:

(1.17)

A bright fringe occurs when:

(1.18)

where TAx(x,y) is the transverse aberration of the ray perpen-
dicular to the wavefront, measured at a plane containing the
center of curvature of the wavefront, and m is an integer
number.

Thus, we can conclude that a lateral shearing interferom-
eter does not measure the wavefront deformation, W(x,y), in a

Figure 1.12 Two laterally sheared wavefronts.
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direct manner but rather its slope, or transverse aberration,
in the direction of the lateral shear. To measure the two com-
ponents of the transverse aberrations we must utilize two lat-
erally sheared interferograms in perpendicular directions.

The derivative of a function reduces the power of the
function by one; thus, the slopes of the function are also
reduced, and we can see that, if a wavefront is highly aspheric
(with large slopes) in the lateral shearing interferometer, then
these slopes are greatly reduced, producing greater fringe
separations. This is an important advantage when testing
highly aspheric surfaces with a lateral shearing interferom-
eter. Of course, an important consequence of such an approach
is that the sensitivity is also reduced.

Many practical configurations are available for laterally
sheared interferometers. The most popular, due to its simplic-
ity, is the Murty interferometer (Murty, 1964), which is illus-
trated in Figure 1.13.

1.5.1 Primary Aberrations

Lateral shear interferograms for the primary aberrations can
be obtained by using the expression for the primary aberrations,
Equation 1.12, which is now discussed in greater detail.

Figure 1.13 Murty’s lateral shear interferometer.
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1.5.1.1 Defocus

The interferogram with a defocused wavefront is given by:

(1.19)

This is a system of straight, parallel, and equidistant fringes
that are perpendicular to the lateral shear direction. When
the defocusing is large, the spacing between the fringes is
small. On the other hand, in the absence of defocus, no fringes
occur in the field.

1.5.1.2 Spherical Aberration

In this case the interferogram is given by:

(1.20)

If this aberration is combined with defocus, we may write
instead:

(1.21)

Then, the interference fringes are cubic curves.

1.5.1.3 Coma

In the case of the coma aberration, the interferogram is given
by:

(1.22)

when the lateral shear is S in the sagittal (x) direction. If the
lateral shear is T in the tangential (y) direction, the fringes
are given by:

(1.23)

1.5.1.4 Primary Astigmatism

In the case of astigmatism, when the lateral shear is S in the
sagittal (x) direction, the fringes are given by:

2DxS m= λ

4 2 2A x y xS m+( ) = λ

4 22 2A x y x Dx S m+( ) +[ ] = λ

2BxyS m= λ

B x y T m2 23+( ) = λ



(1.24)

and for the lateral shear T in the tangential (y) direction we
have:

(1.25)

The fringes are straight and parallel, as in the case of defocus,
but the interferograms have different separations.

Some lateral shear interferograms for primary aberra-
tions are shown in Figure 1.14. Yang and Oh (2001) have
proposed a method to identify these primary aberrations in a
lateral shear interferogram using a neural network to obtain
a mapping function. The neural network is a network of non-
linear functions between the input, formed by line images,
and the output, or the primary aberrations.

1.5.2 Rimmer–Wyant Method 
To Evaluate Wavefronts

The Rimmer–Wyant method (Rimmer, 1974; Rimmer and
Wyant, 1975) performs a polynomial interpolation while
determining the wavefront shape from a set of lateral-shear
interferogram sampled points. The wavefront is represented

Figure 1.14 Some lateral shear interferograms.
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by W(x,y) and may be expressed by the xy polynomial with
degree k:

(1.26)

with N = (k + 2)(k + 1)/2 coefficients Bnm. The expression for
the laterally sheared wavefront by distance S in the x direc-
tion is:

(1.27)

and, similarly, the sheared wavefront by distance T in the y
direction is:

(1.28)

On the other hand, the Newton binomial theorem is:

(1.29)

where:

(1.30)

Thus, Equations 1.27 and 1.28 may be written:

(1.31)

and

(1.32)
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Hence, by subtracting Equation 1.26 from Equation 1.31 we
obtain:

(1.33)

and by subtracting Equation 1.26 from Equation 1.32 we
obtain:

(1.34)

with k(k + 1)/2 coefficients Cnm and the same number of coef-
ficients Dnm given by:

(1.35)

and

(1.36)

The values of Cnm and Dnm are obtained from the two laterally
sheared interferograms in orthogonal directions by means of
a two-dimensional, least-squares fit to the measured values
of ΔWS and ΔWT. Then, the values of all coefficients Bnm are
calculated by solving the system of linear equations defined
by Equations 1.35 and 1.36, each with a matrix of dimensions
N × M. The Rimmer–Wyant method to find the wavefront
using Zernike polynomials has been further developed by
Okuda et al. (2000) to improve its accuracy.

1.5.3 Saunders Method To 
Evaluate Interferograms

When evaluating an unknown wavefront it is possible to deter-
mine its shape from a lateral shearing interferogram. To illus-
trate the method proposed by Saunders (1961), let us consider
Figure 1.15, assuming that W1 = 0. Then, we can write:
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(1.37)

The primary problem with this method is that the wavefront
is evaluated only at points separated by a distance S. Inter-
mediate values are not measured and must be interpolated.
Orthogonal polynomials, as described in Chapter 4 in this
book, may be used to some advantage to represent the wave-
front in a lateral shearing interferometer. The accuracy of this
mathematical representation has been studied by Wang and
Ling (1989).

1.5.4 Spatial Frequency Response of 
Lateral Shear Interferometers

Unlike Twyman–Green interferometers, lateral shearing inter-
ferometers have a nonuniform response to spatial frequencies
(Fourier components) in the wavefront deformations function.
This response may be analyzed as illustrated in Figure 1.16.

Figure 1.15 Saunders method to obtain the wavefront in a lateral
shearing interferogram.
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The spatial frequency content of the lateral shearing optical
path difference function, which is the interferometer output
OPD, is given by:

(1.38)

or

(1.39)

where F{g} is the Fourier transform of g. Using the lateral
displacement theorem of Fourier theory, this expression is
transformed into:

(1.40)

where f is the spatial frequency of a Fourier component, or

(1.41)

from which we may obtain:

(1.42)

The spatial frequency sensitivity of the interferometer R(f)
may now be defined as:

(1.43)

which may also be written as:

Figure 1.16 The lateral shearing interferometer, considered to be
an electronic system.
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(1.44)

This function has zeros at πfS = mπ. Thus, the lateral dis-
placement interferometer is not sensitive to spatial frequen-
cies given by:

(1.45)

where m is an integer, as shown in Figure 1.17. This result
implies that the wavefront deformations, W(x,y), are not
obtained with the same precision for all spatial frequencies. A
larger uncertainty in the calculation will be encountered for
recovery of spatial frequency components close to the zeros in
Equation 1.44. Elster and Weingärtner (1999a,b) have pro-
posed a method to obtain the wavefront from two lateral shear
interferograms taken with two different shears that avoids the
loss of some spatial frequencies.

1.5.5 Regularization Method 
To Obtain Wavefronts

In lateral shearing interferometry, the interference pattern is
formed with two mutually laterally displaced copies of the
wavefront under analysis. The mathematical form of the irra-
diance of a lateral shear fringe pattern may be written as:

Figure 1.17 Lateral shear interferometer sensitivity as a function
of the spatial frequency.
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(1.46)

where k = 2π/λ and S is the lateral shear. We also need the
orthogonally displaced interferogram to completely describe
the wavefront under analysis. The orthogonal interferogram
may be written as:

(1.47)

where T is the lateral shear, orthogonal to S. The fringe
patterns in Equations 1.46 and 1.47 may be transformed into
carrier-frequency interferograms by introducing a large and
known amount of defocusing to the testing wavefront (Man-
travadi, 1992). Having obtained linear carrier fringe patterns,
we can proceed to their demodulation using standard tech-
niques of fringe carrier analysis as provided in this book.

The demodulated and unwrapped difference wavefront
may be integrated using the path-independent integration
procedure presented here. Assume that we have already esti-
mated and unwrapped the interesting phase of the two
orthogonally sheared interferograms. Using this information,
the least-squares wavefront reconstruction may be stated to
minimize the following merit function:

(1.48)
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where the “hat” function represents the estimated wavefront,
and Lx and Ly are two-dimensional lattices containing valid
phase data in the x and y shearing directions. However, the
minimization problem stated in Equation 1.48 is not well
posed, because the matrix that results from setting the gra-
dient of U equal to zero is not invertible. Fortunately, we may
apply classical regularization to this inverse problem to find
the expected smooth solution of the problem (Thikonov, 1963).
In classical regularization theory, the regularizer consists of
a linear combination of the squared magnitudes of derivatives
of the estimated wavefront inside the domain of interest. In
particular, we may use a discrete approximation to the Lapla-
cian to obtain the second-order potentials:

(1.49)

Therefore, the regularized merit function becomes:

(1.50)

where Pupil refers to the two-dimensional lattice inside the
pupil of the wavefront being tested. The estimated wavefront
obtained using these second-order potentials as regularizers
makes the solution behave like a thin metallic plate attached
to the observations by linear springs. The regularizing poten-
tials discourage large changes in the estimated wavefront
among neighboring pixels. As a consequence, the searched
solution will be relatively smooth. The λ parameter controls
the amount of smoothness of the estimated wavefront. If the
observations have a negligible amount of noise, then λ may
be set to a small value (~0.1); if the observations are noisy,
then λ may be set to a higher value (in the range of 0.5 to
11.0) to filter out some noise. It should be noted that the use
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of regularizing potentials in this case is a must, even for noise-
free observations, to yield a stable solution of the least-
squares integration for lateral displacements greater than
two pixels. As analyzed by Servín et al. (1996), this is because
the inverse operator that performs the least-squares integra-
tion has poles in the frequency domain.

The estimated wavefront may be calculated using a sim-
ple gradient descent:

(1.51)

applied to all pixels, where τ is the convergence rate. This
optimizing method is not very fast, so we normally use faster
algorithms, such as the conjugate gradient.

1.6 RONCHI TEST

In the Ronchi test (Cornejo, 1992), the screen is a ruling placed
near the point of convergence of the returning aberrated wave-
front, as shown in Figure 1.18. An imaging optical system is
used to observe the projected shadows of the ruling lines over
the surface being analyzed. This imaging system may be the
eye in qualitative tests but may be a lens in quantitative tests.
By measuring the fringe deformations in the projected shad-
ows, the transverse aberration in the direction perpendicular
to the ruling lines is easily computed. If the ruling lines are
along the y-axis, the transverse aberration TAx is measured.
If the ruling lines are along the x-axis, the transverse aberra-
tion TAy is measured. In other words, two different measure-
ments with two orthogonal ruling orientations are necessary
to measure the two components of the transverse aberration.

Another system that measures the wavefront slopes is the
lateral shearing interferometer (Mantravadi, 1992) described
earlier, where the lateral shear is small compared with the
period of the maximum spatial frequency to be detected in the
wavefront deformations. Under these conditions the lateral
shearing interferometer is identical to the Ronchi test.
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Thus, in these tests, we measure the transverse aberra-
tions at an observing plane located at a distance L from the
wavefront being measured, as shown in Figure 1.19. These
transverse aberrations are related to the wavefront slopes in
the x and y directions by:

(1.52)

and

(1.53)

As mentioned before, a linear grating fringe pattern is easier
to analyze using standard carrier fringe detecting procedures,
such as the Fourier method, the synchronous method, or the
spatial phase-shifting method. These techniques are described
later in this book.

We may start with a simplified mathematical model for
the transmittance of a linear grating:

Figure 1.18 Optical arrangement in the Ronchi test.
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(1.54)

(Ronchi rulings are normally made of binary transmittance,
not sinusoidal, but for mathematical simplicity we have con-
sidered here a sinusoidal ruling.) The linear ruling is placed
at the plane where the aberrated wavefront is to be measured.
If we place a light detector at a distance L from the plate,
due to the wavefront aberrations we will obtain a distorted
irradiance pattern that will be approximately given by:

(1.55)

The irradiance, Ix(x,y), will be a distorted version of the trans-
mittance, Tx(x,y). The shadow of the ruling, when illuminated

Figure 1.19 Measuring the transverse aberration in an aberrated
wavefront.
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with a wavefront with spherical aberration, produces a shadow
over a charge-coupled device (CCD) video array, as shown in
Figure 1.20.

As pointed out before, in the absence of rotational sym-
metry, it is necessary to detect two orthogonal shadow pat-
terns to completely describe the gradient field of the wavefront
being analyzed. The second linear ruling is located at the
same testing plane, but with its strip lines oriented orthogo-
nally to that of the first ruling. That is,

(1.56)

The lines in this transparency are perpendicular to the first
one.

Thus, the distorted image of the Ronchi ruling at the
collecting data plane will be given by:

(1.57)

We may use any of the carrier fringe methods described in
this book to demodulate these two Ronchigrams.

Once the detected and unwrapped phase of the ruling’s
shadows has been obtained, we need to integrate the resulting
gradient field. To integrate this phase gradient we may use
path-independent integration, such as least squares. Least-
squares integration of the gradient field may be considered
to be the function that minimizes the following quadratic
merit function:

Figure 1.20 Typical Ronchi pattern with spherical aberration.

T x y
y

y( , )
cos( )

=
+( )1

2
0ω

I x y y L
W x y

x
y( , ) cos

( , )= + + ∂
∂

⎛
⎝

⎞
⎠

1
2

1
2 0 0ω ω



(1.58)

where the “hat” function  is the estimated wavefront, and
we have approximated the derivative of the searched phase
along the x- and y-axes as first-order differences of the esti-
mated wavefront. The least-squares estimator may be obtained
from U by a simple gradient descent applied to all pixels:

(1.59)

or by using a faster algorithm such as conjugate gradient or
transform methods (Fried, 1977; Hunt, 1979).

1.7 HARTMANN TEST

The Hartmann test is a well-known technique for testing large
optical components (Ghozeil, 1992). It uses a screen with holes
or strips lying perpendicular to the propagation direction of
the wavefront being analyzed, as shown in Figure 1.21. A
screen with an array of circular holes is placed over the concave
reflecting surface being analyzed. Each of the narrow beams
of light reflected on each hole returns back to an observing
screen called the Hartmann plate. Here, we measure the devi-
ation of the reflected light beams on the Hartmann plate with
respect to the ideal positions. These deviations are the trans-
verse aberrations TAx and TAy measured along the x- and y-
axes, respectively. Thus, to obtain the shape of the testing
wavefront we must use one of the many possible integration
procedures. One method is use of the trapezoidal rule, which
can be mathematically expressed by:
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(1.60)

Another method is to first interpolate the transverse discrete
measurements of the aberration by means of a two-dimen-
sional polynomial fitting and then performing the integration
analytically, as described by Cornejo (1992). Still another
approach is applying a least-squares solution to the integra-
tion problem. This integration procedure has the advantage
of being path independent and robust to noise.

The Hartmann technique samples the wavefront being
analyzed using a screen of uniformly spaced holes situated at
the pupil plane:

(1.61)

Figure 1.21 Optical arrangement in the Hartmann test.
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where HS(x,y) is the Hartmann screen, and h(x,y) represents
the small holes that are uniformly spaced in the Hartmann
screen. Finally, d is the space among the holes of the screen.
A typical Hartmann screen is shown in Figure 1.22.

The collimated rays of light that pass through the screen
holes (Equation 1.61) are then captured by a photographic plate
at some distance L from it. The uniformly spaced array of holes
at the pupil of the instrument is then distorted at the photo-
graphic plate by the spherical aberration of the wavˆefront
under analysis. The screen deformations are then proportional
to the slope of the aspherical wavefront; that is, we have:

(1.62)

where H(x,y) is the Hartmanngram obtained at distance L
from the Hartmann screen. The function h′(x,y) is an image of
the screen holes, h(x,y), as projected at the Hartmanngram
plane. Finally, P(x,y) is the pupil of the wavefront being tested.
As Equation 1.62 shows, only one Hartmanngram is necessary
to fully estimate the gradient of the wavefront. The frequency
content of the estimated wavefront will be limited by the sam-
pling theorem to the inverse of the period d of the screen holes.
Figure 1.23 shows the Hartmanngram of a 62-cm paraboloidal
mirror. 

Figure 1.22 Typical Hartmann screen used in the Hartmann screen
test.
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Traditionally, these Hartmanngrams (distorted images of
the screen at the plane of the photographic plate) are analyzed
by measuring the centroid of the spot images h′(x,y) generated
by the screen holes, h(x,y). Deviations of these centroids from
their uniformly spaced positions (unaberrated positions) are
recorded. As Equation 1.62 shows, these deviations are pro-
portional to the slope of the aspherical aberration. The coor-
dinates of the centroid give a two-dimensional discrete field of
the wavefront gradient which requires integration and inter-
polation over regions without data. Integration of the gradient
field of the wavefront is normally done by applying the trap-
ezoidal rule — that is, by following several independent inte-
gration paths and averaging their outcomes. In this way, we
may approach a path-independent integration. Using this inte-
gration procedure, the wavefront is known only at the position
of the hole. Although this integration technique may provide
a good wavefront estimation, a determination of the positions
of the Harmann spots could be a time-consuming process.
Finally, a polynomial or spline wavefront fitting is necessary
to estimate values of the wavefront at places other than the
discrete points where the gradient data are collected. A two-
dimensional polynomial for the wavefront gradient is then
fitted by least-squares to the slope data. This polynomial must
contain every possible type of wavefront aberration; otherwise,
some unexpected features (especially at the edges) of the wave-
front may be filtered out. On the other hand, if one uses a
high-degree polynomial (to avoid filtering out any wavefront
aberration), the estimated continuous wavefront may oscillate

Figure 1.23 Hartmanngram of 62-cm paraboloidal primary mirror.



wildly in regions where no data are collected. The performance
of the Hartmann test and the lateral shearing interferometer
has been compared by Welsh et al. (1995).

Many similar procedures have been developed to obtain
the wavefront from measurements of transverse aberrations.
For example, Rubinstein and Wolansky (2001) have proposed
a method to reconstruct the wavefront shape from a set of
first-order, partial-differential equations.

1.8 FRINGE PROJECTION

For a fringe projection, a periodic ruling is projected onto a
solid body, then the image of this body with the fringes over
its surface is imaged over another periodic ruling to form moiré
fringes. The shape of a solid body can be measured by projecting
a periodic structure or ruling over the body (Idesawa et al.,
1977; Takeda, 1982; Doty, 1983; Gåsvik, 1983; Creath and
Wyant, 1988). The fringes may be projected onto the body by
a lens or slide projector (Takasaki, 1970, 1973; Parker, 1978;
Pirodda, 1982; Gåsvik, 1983; Cline et al., 1984; Reid, 1984;
Suganuma and Yoshisawa, 1991). In another method, the inter-
ference fringes produced by two tilted, flat wavefronts are pro-
jected over the body (Brooks and Heflinger, 1969). A slightly
different method, shadow moiré, produces the moiré fringes
between a Ronchi ruling and the shadow of the ruling projected
over a solid body located just behind the ruling. This method
makes it possible to find the shape of nearly flat surfaces
(Jaerisch and Makosch, 1973; Pirodda, 1982).

Let us now consider a straight fringe that is projected
from point A with height za to point C on the plane z = 0, as
shown in Figure 1.24. This fringe is observed from point B
with height zb over the plane z = 0. If the surface to be
measured is located over the plane z = 0, this surface will
intersect the fringe at point D. As observed from point B, the
fringe appears to be at point E on the plane z = 0. The
separation between points E and C allows us to calculate the
object height over the plane z = 0. Obviously, the lines AC
and BE are on a common plane, as they intersect at D.
Nevertheless, this plane is not necessarily perpendicular to



the plane z = 0. This geometry is completely general. The
shape of the body is determined if the three-dimensional
coordinates of point D are calculated from measurements of
the coordinates of point E on the plane x = 0 for many
positions on the projected fringes.

This is the general configuration for fringe projection,
but a simpler analysis can be made if both the lens projector
and the observer are optically placed at infinite distances from
the body to be measured, as shown in Figure 1.25. The
observer is located in a direction parallel to the z-axis. In this
case, the object heights are given by:

(1.63)

where angle θ is the inclination of the illuminator; m is the
fringe number, with the fringe m = 0 being located at the
origin (x = 0); and distance d is the fringe period in a plane
perpendicular to the illuminating light beam.

The equivalent two-beam interferometric expression for
the wavefront deformation, W(x), is:

(1.64)

Figure 1.24 Projecting a periodic structure over a solid body to
measure its shape.
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Hence, the surface deformation f(x,y) = 2W(x,y) when tested
in a Fizeau interferometer is:

(1.65)

where m is the order of interference, p is the fringe period
introduced by tilting the reference wavefront, and a is a con-
stant. By comparing these two expressions, we see that we
may consider fringe projection with this geometry as Fizeau
interferometry with wavelength λ given by:

(1.66)

These projected fringes may then be considered Fizeau fringes
with a large linear carrier (tilt) introduced. This body, with the
fringes or interferogram, is imaged on the observing plane by
means of an optical system, photographic camera, or television
camera. This interferogram with tilt may be analyzed by any
of the traditional methods, but one common method applies
the moiré techniques, as described later in Chapter 9. The
image is then superimposed on a linear ruling with approxi-
mately the same frequency as the fringes on the interferogram.
This linear ruling may be real or computer generated.

Figure 1.25 Projecting a periodic structure over a solid body to
measure its shape, with both the projector and observer at infinity.
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Moiré methods are not really interferometric; neverthe-
less, their fringe analyses are so similar that a description of
these methods is convenient. Whenever two slightly different
periodic structures are superimposed, a “beating” between the
two structures is observed in the form of another periodic
structure with a lower spatial frequency. These fringes are
moiré fringes.

Moiré techniques have been used in metrology for a long
time, with many different configurations and purposes (see
reviews by Sciammarella, 1982; Reid, 1984; Patorski, 1988).
They are discussed in more detail in Chapter 9, primarily as
tools for the analysis of interferograms. Here, we briefly con-
sider the basic moiré configurations.

1.9 TALBOT INTERFEROMETRY 
AND MOIRÉ DEFLECTOMETRY

Another method commonly used to measure wavefront defor-
mations uses the Talbot autoimaging procedure, illustrated
in Figure 1.26. A ruling is illuminated with a collimated,
convergent, or divergent beam of light. The shadow of the
ruling is projected upon a screen placed at some distance from
the ruling, where another ruling is placed to form the moiré.
Talbot (1836) discovered that when a linear ruling is illumi-
nated with a collimated beam of light, perfect images of this
ruling are formed without any lenses, at distances that are
integer multiples of a distance called the Rayleigh (1881)
distance (LR), as shown in Figure 1.26.

Figure 1.26 Autoimage formation of a ruling, illuminated with a
collimated beam of light.

Microscope
objective

Collimator

He-Ne laser

Observation
plane

LR



If the illuminating wavefront is not flat but spherical or
distorted, the fringes in the autoimage are distorted, not
straight. The interferometric explanation assumes that the
diffracted wavefronts produce a lateral shearing interfero-
gram, as shown in Figure 1.27a. On the other hand, the
geometric interpretation considers the fringes to be shadows
of the ruling lines, projected in a direction perpendicular to
the wavefront (Figure 1.27b). Both models are equivalent.

When the moiré pattern between the fringe image repre-
sented by the autoimage and a superposed linear ruling is
formed, we speak of a Talbot interferometer. Talbot interfer-
ometry has been described by many researchers, such as Yoko-
seki and Susuki (1971a,b), Takeda and Kobayashi (1984), and
Rodríguez-Vera et al. (1991). These authors interpreted the
fringe using interferometric models such as multiple-beam
lateral shearing interferometry. Kafri (1980, 1981) applied this
method from a geometrical point of view and referred to it as
moiré deflectometry. Glatt and Kafri (1988), Stricker (1985),
and Vlad et al. (1991) have described this method and some
applications. Interferometric and geometric interpretations
may be proved to be equivalent, as pointed out by Patorski
(1988). This procedure is closely analogous to the Ronchi test
(Cornejo, 1992).

In moiré deflectometry, or Talbot interferometry, as pre-
viously described, the observing plane is located at the first

Figure 1.27 Formation of autoimages with distorted or spherical
wavefronts.
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Talbot autoimage of the ruling; thus, distance dT is equal to
the Rayleigh distance LR, as given by:

(1.67)

The resulting deflectograms, or Talbot interferograms, may
be analyzed in the same way as the Ronchigrams.

1.10 COMMON LIGHT SOURCES 
USED IN INTERFEROMETRY

By far the most common light source in interferometry is the
helium–neon laser. The great advantage of this light source
is its large coherence length and monochromaticity; however,
these characteristics can sometimes be a significant problem
when many spurious fringes are also formed, unless great
precautions are taken. When a laser light source is used,
extremely large OPDs can be introduced (Morokuma et al.,
1963). As shown in Figure 1.28, the light emitted by a gas
laser usually consists of several equally spaced spectral lines
(longitudinal modes) with a frequency separation equal to:

(1.68)

where L is the laser cavity length. If cavity length L of a laser
changes because of thermal expansion or contraction or
mechanical vibrations, the lines move along the frequency

Figure 1.28 Spectrum of light (longitudinal modes) from a gas laser.
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scale to preserve their relative separations, but the intensities
remain under the power-gain curve, as shown in Figure 1.29.

Single-mode or single-frequency lasers produce a per-
fectly monochromatic wavetrain, but because of instabilities
in the cavity length the frequency may be unstable. Servo-
mechanisms have allowed the commercial production of single-
frequency lasers that have extremely stable frequencies. These
lasers are the ideal source for interferometry because an OPD
as long as desired can be introduced without any loss in con-
trast.

The fringe visibility in an interferometer using a laser
source with several longitudinal modes is a function of the
optical path difference. For good contrast, the OPD has to be
an integral multiple of 2L. A laser with two longitudinal
modes is sometimes stabilized to avoid contrast changes by a
method recommended by Bennett et al. (1973), Gordon and
Jacobs (1974), and Balhorn et al. (1972).

Another laser frequently used in interferometers is the
laser diode. Creath and Wyant (1985), Ning et al. (1989), and
Onodera and Ishii (1996) have studied the most important
characteristics of these lasers for use in interferometers. Their
low coherence length (of the order of 1 millimeter) is a great
advantage in many applications, and other advantages include
their low price and small size.

Figure 1.29 Visibility in a Twyman–Green interferometer using
a helium–neon laser, as a function of the optical path difference, for
three different lengths of the laser cavity.
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1.11 ASPHERICAL COMPENSATORS 
AND ASPHERIC WAVEFRONTS

The most common types of interferometer, with the exception
of lateral or rotational shearing interferometers, produce
interference patterns in which the fringes are straight, equi-
distant, and parallel when the wavefront under analysis is
perfect and spherical, with the same radius of curvature as
the reference wavefront. If the surface being analyzed does
not have a perfect shape, the fringes will not be straight and
their separations will be variable. Deformations of the wave-
front may be determined by a mathematical examination of
the shapes of the fringes. Because the fringe separations are
not constant, in some places the fringes will be widely spaced
but in some others the fringes will be too close together. It is
desirable to compensate in some way for the spherical aber-
rations of wavefronts being analyzed so that the fringes
appear straight, parallel, and equidistant for perfect wave-
fronts. The necessary null test may be accomplished utilizing
some special configurations that may be used to test a conical
surface. Almost all of these surfaces have rotational symme-
try. An aspherical or null compensator is an optical element
with spherical aberrations designed to compensate for spher-
ical aberrations in an aspherical wavefront. It is beyond the
scope of this book to discuss them further here, but they have
been described in detail in the literature (e.g., Offner and
Malacara, 1992). A typical example of such compensators, the
well-known Offner compensator, is illustrated in Figure 1.30.

1.12 IMAGING OF THE PUPIL ON 
THE OBSERVATION PLANE

An aberrated wavefront continuously changes its shape as it
travels; thus, if the optical system is not perfect, then the
interference pattern will also continuously change as the
beam advances, as shown in Figure 1.31. The change in shape
of a traveling wavefront has been studied and calculated by
Józwicki (1990), who has taken into account the effects of
diffraction. The errors of an instrument are represented by



wavefront distortions on the pupil; hence, the interferogram
should be taken at that place.

1.12.1 Imaging the Pupil Back on Itself

When testing a lens with any of the configurations described
earlier, the wavefront travels twice through the lens, the sec-
ond time after being reflected at the small mirror in front of
the lens. If the aberration is small, the total wavefront defor-
mation is twice the deformation introduced in a single pass
through the lens; however, if the aberration is large, this is
not so because the wavefront changes while traveling from
the lens to the mirror and back to the lens. If the spot on the
surface where the defect is located is not imaged back onto
itself by the concave or convex mirror, the ray will not pass
through this defect a second time. Great confusion then
results with regard to interpretation of the interferogram, as
the defect is not precisely duplicated by the double pass
through the lens (Dyson, 1959).

It may be shown that the image of the lens is formed at
a distance S from the lens given by:

(1.69)

Figure 1.30 Offner compensator.
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where F is the focal length, and r is the radius of curvature
of the surface (r > 0 for a convex mirror, r < 0 for a concave
mirror). We can see that the ideal mirror is convex and very
close to the lens (r ~ F).

An appropriate optical configuration has to be used if the
lens being analyzed has a large aberration in order to image
its pupil back on itself. Any auxiliary lenses or mirrors must
be used to preserve the wavefront shape. Some examples of
these arrangements are provided in Figure 1.32 (Malacara
and Menchaca, 1985). For microscope objectives, however,
these solutions are not satisfactory because the ideal place to
observe the fringes is at the back focal plane. In this case, the
Dyson system illustrated in Figure 1.33 is an ideal solution.
It is interesting to point out that Dyson’s system can be used
to place the self-conjugate plane at a concave or convex surface
while maintaining the concentricity of the surfaces.

1.12.2 Imaging the Pupil on 
the Observing Screen

The second problem is to image the interference pattern on
the observing detector, screen, or photographic plate. The
imaging lens does not need to preserve the wavefront shape,
as it is generally placed after the beam splitter so both inter-
fering wavefronts pass through this lens; however, this lens
has to be designed in such a way that the interference pattern

Figure 1.31 Change in the shape of a wavefront as it travels.
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is imaged without any distortion, assuming that the pupil of
the system is at the closest image of the light source, as shown
in Figure 1.34a. A rotating ground glass in the plane of the
interferogram might be useful sometimes in order to reduce
the noise due to speckle and dust in the optical components.
Ideally, this rotating glass should not be completely ground
in order to reduce the loss of brightness and to maintain the
stop of the imaging lens at the original position, as shown in

Figure 1.32 Some optical arrangements to test a lens, imaging
its pupil back on itself.

Figure 1.33 Dyson’s system to test microscope objectives.
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Figure 1.34b. If the rotating glass is completely ground, the
stop of the imaging lens should be shifted to the lens in order
to use all available light, but then the lens must be designed
to take into consideration this new stop position, as shown in
Figure 1.34c.

When a distorted wavefront propagates in space its shape
is not preserved but changes continuously along its trajectory.
From a geometrical point of view (that is, neglecting diffrac-
tion), only a spherical or flat wavefront keeps its shape, with
only the radius of curvature changing. This is a well-known
fact that should be taken into account in the interferometry
of wavefronts. As an example, let us consider the Twyman–
Green interferometer shown in Figure 1.35. A conic or spher-
ical mirror is tested by means of this interferometer. If the
mirror has a conical shape, the spherical aberration is com-
pensated with a lens having the proper amount of spherical
aberration with the opposite sign.

Figure 1.34 Imaging the interferogram on the observation plane:
(a) without any rotating ground glass, (b) with a rotating half-
ground glass, and (c) with a rotating ground glass.
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The wavefront reflected on the surface is combined at the
beam splitter with a perfectly flat reference wavefront. The
focusing lens has to be designed so that the returning wave-
front is perfectly flat if the surface has no defects. If the
surface has a distorted shape, the reflected wavefront is also
distorted; thus, the wavefront going out of the focusing lens
and returning to the beam splitter will not be flat but dis-
torted. The deformations in the wavefront going out of the
focusing lens, however, are not the same as the deformations
at the surface.

1.12.3 Requirements on the Imaging Lens

To obtain an interference pattern that is directly related to
the wavefront deformations on the surface, the pattern must
be observed at a plane that is conjugate to this surface, as
has been described in the literature (e.g., Slomba and Figoski,
1978; Malacara and Menchaca, 1985; Selberg, 1987; Józwicki,
1989, 1990; Malacara, 1992). This is the purpose of the pro-
jection lens, which has to form an image of the surface being
analyzed on the observing screen. The following two require-
ments must be satisfied by this lens (see Figure 1.36):

Figure 1.35 Conic mirror tested in Twyman–Green interferometer.
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1. The height of point P2 over the optical axis should be
strictly linear with the height of the point P1 over the
optical axis; in other words, there should be no dis-
tortion. This assures us that a straight fringe on the
surface being analyzed is also a straight fringe on
the observing screen. This condition is not absolutely
necessary if the fringe distortion is taken into account
during computer analysis of the fringes.

2. Point object P1 must correspond to point image P2. By
Fermat’s principle, then, the optical path through
A1B2 is equal to the optical path through A2B1. Let us
assume that a perfect surface sends the reflected ray
from P1 through A1. A distorted wavefront sends a ray
that passes through P1 toward A2. Both rays then
arrive together at point P2. Because the optical paths
are equal, any phase difference between the two rays
at point P1 is the same when they arrive at point P2.

If these conditions are satisfied the interferograms are iden-
tical. It must be noted that it is not necessary for lens 2 to

Figure 1.36 Optical system to image the pupil of a system on the
observing plane.
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produce a perfect wavefront, as both wavefronts are refracted
on this lens, and any deformations are introduced in both
wavefronts in the same amount.

The imaging lens design must include a complete system,
with all lenses between the surface and the observing screen.
The points where the light beams converge may be considered
the stops of the lens system, so the system may have two or
more virtual stops. An intermediate image occurs, as shown
in Figure 1.36; however, the observing plane cannot be located
at this position for two reasons: (1) it is very unlikely that it
has the required dimensions, and (2) the system would be so
asymmetric that the distortion would be extremely large.

A complete system, with lenses 1 and 2, is more symmet-
ric, making it easier to correct the distortion. The stop diam-
eter is given by the maximum transverse aberration at the
stop. This maximum transverse aberration is a function of
three factors: (1) the degree of asphericity of the surface under
analysis, (2) the deformation error in this surface, and (3) the
tilt between the wavefront under analysis and the reference
wavefront. In general, this aperture is extremely small, even
with large transverse aberrations.

Let us now analyze the degree of correction required for
each of the five Seidel aberrations.

• Spherical aberration. This aberration increases with
the fourth power of the aperture; thus, it does not have
to be highly corrected as the aperture is very small. A
large amount of spherical aberration may be tolerated.

• Coma. This aberration increases with the cube of the
aperture in the tangential plane and with the square
of the aperture in the sagittal plane; thus, correction
of this aberration is more necessary than that of the
spherical aberration, the most important being the
sagittal coma. If a large tilt is introduced in the inter-
ferogram, resulting in straight fringes perpendicular
to the tangential plane, the fringes in the vicinity of
this plane are affected by coma to a lesser degree than
the fringes on the sagittal plane.



• Petzval curvature. Ideally, the curvature of the surface
under analysis must be taken into account by curving
the object plane by the same amount. The wavefront
aberration due to this aberration increases with the
square of the aperture; however, this aberration is not
so important as long as the ray transverse aberration in
the observing plane remains small, as we will see later.

• Astigmatism. The wavefront aberration produced by
astigmatism, as for the Petzval curvature, increases
with the square of the aperture. So, the important
criterion here should also be the magnitude of the ray
transverse aberration.

• Distortion. This aberration, as we explained before, may
be ignored if the compensation is made in the computer
analysis of the fringes; however, it is always easier to
correct it on the lens. Again, the important criterion is
the magnitude of the ray transverse aberration.

The slope of the aberrated wavefront with respect to the ideal
wavefront (reference wavefront) is:

(1.70)

where ΔW is the change in the wavefront deformation if the
height of point P1 changes by an amount ΔS. Let us assume
that the magnification of the entire lens system is m. Then,
the magnitude of the transverse ray aberration (TA) on the
observing plane corresponds to the object height shift, ΔS,
given by:

(1.71)

Thus, we may see that

(1.72)
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To find the maximum allowable ray transverse aberration
(TAmax) we see that if ΔWmax is the maximum permissible error
in the wavefront measurement, the corresponding maximum
value of this ray transverse aberration is:

(1.73)

If the minimum separation between two consecutive fringes
on the surface is σ1 and ΔWmax is a fraction (1/n) of the wave-
length (ΔWmax = λ/n), we may write:

(1.74)

Hence, if the minimum separation between two consecutive
fringes in the observation plane is σ2 (given by σ2 = mσ1), we
see that

(1.75)

which means that the maximum permissible transverse aber-
ration in the projecting optical system is equal to a predeter-
mined fraction of the minimum separation between the
fringes in the observation plane.

When the interferogram is observed with a two-dimen-
sional detector, a wavefront tilt or aberration may be intro-
duced to the limit imposed by the detector. Then, the
maximum transverse aberration is approximately equal to
the resolution power of the detector, given by the separation
between two consecutive pixels, or detector elements.

The stop semiaperture y may be obtained by using the
minimum fringe separation as follows:

(1.76)

where R is the radius of curvature of the mirror, as shown in
Figure 1.36.

TA
m W

W
y

max
max=

∂
∂

⎛
⎝⎜

⎞
⎠⎟

Δ

TA
m

n
max = σ1

TA
n

max = σ2

y
R m R= =λ

σ
λ

σ1 2



If the distortion aberration is not compensated for during
computer analysis, then the transverse aberration must be
measured from the Gaussian image position; otherwise, it is
measured from the center of gravity of the image. If the
magnification of the system is much less than 1, the interfer-
ogram in the observation plane is very small and the require-
ment for a small transverse aberration may be quite strong.

The principles to be used in the design of projecting lenses
for interferometry have been described using the Twyman–
Green interferometer as an example, but they may be applied
to Fizeau interferometers as well.

1.13 MULTIPLE-WAVELENGTH 
INTERFEROMETRY

In phase-shifting interferometry, the phase is calculated mod-
ulo 2π, so a phase wrapping occurs during the calculation. To
unwrap the phase, the phase between two adjacent measured
points in the interferogram must be smaller than 2π which
limits the maximum wavefront slope and hence the maximum
asphericity being measured. Wyant (1971), Polhemus (1973),
Cheng and Wyant (1984), Wyant et al. (1984), Creath et al.
(1985), Creath and Wyant (1986), Gushov and Solodkin (1991),
and Onodera and Ishii (1999) have studied the problem of
phase determination when two or more different wavelengths
are used. If two different wavelengths (λa and λb) are simulta-
neously used, the wavetrain is modulated as shown in Figure
1.37, with the group length (λeq) given by:

(1.77)

Wyant (1971) described two methods that utilize two
wavelengths. In the first method, a photographic recording of
an interferogram is taken with one wavelength, then another
interferogram is formed with the second wavelength and the
photograph of the first interferogram is placed over the second
one. In this manner, a moiré between the photograph of one
interferogram and the real-time image of the second is

λ λ λ
λ λeq

a b

b a
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obtained. High frequencies of this moiré are then filtered out
with a pinhole. In the second method, images of the two
interferograms are taken simultaneously, one on top of the
other, by illuminating with the two wavelengths. The high
spatial frequencies of the resulting moiré are also filtered with
a pinhole.

Polhemus (1973) described a real-time, two-wavelength
interferometer using a television camera to detect the moiré
pattern. Figure 1.38 shows the interferograms obtained with
two wavelengths, the resulting moiré pattern, and its filtered
pattern. The resulting pattern is the image of an interfero-
gram taken with the equivalent wavelength.

Cheng and Wyant (1984), Creath et al. (1985), and Creath
and Wyant (1986) implemented phase-shifting interferometers
using two wavelengths. Two separate wrapped-phase maps are
obtained by taking two independents sets of measurements,
using each of the two wavelengths. We assume that the
Nyquist limit has been exceeded, due to the high wavefront
asphericity. With one wavelength the phase unwrapping would
be impossible, but it can be achieved with two wavelengths.
The two wavefront deformations are different if the scale is
the phase, because the wavelengths are different; however,
they must be equal if the optical path difference is used instead
of the phase. Thus, we have:

(1.78)

We may also write:

(1.79)

Figure 1.37 Wavetrain formed by two wavelengths.
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and

(1.80)

where ma and mb are integers. Thus, using Equation 1.78 we
have:

(1.81)

We have one equation with two unknowns (ma and mb). The
system may be solved if we assume that the difference of order
numbers between two adjacent pixels is the same for both
wavelengths. This hypothesis is valid if the asphericity is not
extremely high. Thus, we may obtain:

(1.82)

The OPD values for all pixels in a row may be obtained if we
take OPD1 = 0. Figure 1.39 illustrates the phase unwrapping
procedure using two different wavelengths with a ratio of 6
to 5. The only possible valid points when unwrapping the
wavefront are the thick circles, where the two wavelengths
coincide. The result is that, even with subsampling, the
unwrapping presents no ambiguities.

Cheng and Wyant (1985) enhanced the capability of two-
wavelength interferometry by introducing a third wavelength

Figure 1.38 Moiré of interferograms taken with two wavelengths:
first wavelength, λa = 0.633; second wavelength, λb = 0.594; equivalent
wavelength, λeq = 9.714.
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so even steeper wavefront slopes can be measured. Löfdahl
and Eriksson (2001) developed a mathematical algorithm for
resolving with a good certainty the 2π ambiguities when using
any number of wavelengths.

Hariharan and Roy (1994) proposed using white light
and measuring the contrast function in the frequency domain.
The interferometer has to be designed using an achromatic
phase shifter in order to avoid a change in the contrast func-
tion when changing the phase. This achromatic phase shifter
allows a change in the phase between the two beams for
different wavelengths, without a change in the optical path
difference. The mathematical procedure involves two Fourier
transforms, forward and inverse, along the direction of change
of the phase for each pixel in the interferogram. White-light
interferometry has developed impressively to the point that
many opaque materials such as ceramics, plastics, and even
paper can be measured like specular materials (Wyant, 1993;
Harasaki and Wyant, 2000; Harasaki et al., 2000; de Groot
et al., 2002).

REFERENCES

Balhorn, R., Kunzmann, H., and Lebowsky, F., Frequency stabiliza-
tion of internal mirror helium–neon lasers, Appl. Opt., 11,
742–744, 1972.

Bennett, S.J., Ward, R.E., and Wilson, D.C., Comments on frequency
stabilization of internal mirror helium–neon lasers, Appl. Opt.,
12, 1406–1406, 1973.

Brooks, R.E. and Heflinger, L.O., Moiré gauging using optical inter-
ference fringes, Appl. Opt., 8, 935–939, 1969.

Burge, J., Fizeau interferometry for large convex surfaces, Proc.
SPIE, 2536, 127–137, 1995.

Cheng, Y.-Y. and Wyant, J.C., Two-wavelength phase shifting inter-
ferometer, Appl. Opt., 23, 4539–4543, 1984.

Cline, H.E., Lorensen, W.E., and Holik, A.S., Automatic moiré con-
touring, Appl. Opt., 23, 1454–1459, 1984.



Cornejo, A., Ronchi test, in Optical Shop Testing, Malacara, D., Ed.,
John Wiley & Sons, New York, 1992.

Creath, K., Interferometric investigation of a laser diode, Appl. Opt.,
24, 1291–1293, 1985.

Creath, K., Wyko systems for optical metrology, Proc. SPIE, 816,
111–126, 1987.

Creath, K. and Wyant, J.C., Direct phase measurement of aspheric
surface contours, Proc SPIE, 645, 101–106, 1986.

Creath, K. and Wyant, J.C., Aspheric measurement using phase
shifting interferometry, Proc SPIE, 813, 553–554, 1987.

Creath, K. and Wyant, J.C., Comparison of interferometric contour-
ing techniques, Proc. SPIE, 954, 174–182, 1988.

Creath, K., Cheng, Y.-Y., and Wyant, J.C., Contouring aspheric sur-
faces using two-wavelength phase shifting interferometry, Opt.
Acta, 32, 1455–1464, 1985.

de Groot, P., Colona de Lega, J., Kramer, J., and Turzhitsky, M.,
Determination of fringe order in white-light interference
microscopy, Appl. Opt., 41, 4571–4578, 2002.

Dörband, B. and Tiziani, H.J., Testing aspheric surfaces with com-
puter generated holograms: analysis of adjustment and shape
errors, Appl. Opt., 24, 2604–2611, 1985.

Doty, J.L., Projection moiré for remote contour analysis, J. Opt. Soc.
Am., 73, 366–372, 1983.

Dyson, J., Unit magnification optical system without Seidel aberra-
tions, J. Opt. Soc. Am., 49, 713–716, 1959.

Elster, C. and Weingärtner, I., Solution to the shearing problem,
Appl. Opt., 38, 5024–5031, 1999a.

Elster, C. and Weingärtner, I., Exact wave-front reconstruction from
two lateral shearing interferograms, J. Opt. Soc. Am. A, 16,
2281–2285, 1999b.

Fienup, J.R. and Wackermann, C.C., Phase-retrieval stagnation
problems and solutions, J. Opt. Soc. Am. A, 3, 1897–1907, 1986.

Fischer, D.J., Vector formulation for Ronchi shear surface fitting,
Proc. SPIE, 1755, 228–238, 1992.



Freischlad, K., Wavefront integration from difference data, Proc.
SPIE, 1755, 212–218, 1992.

Freischlad, K. and Koliopoulos, C.L., Wavefront reconstruction from
noisy slope or difference data using the discrete Fourier trans-
form, Proc. SPIE, 551, 74–80, 1985.

Fried, D.L., Least-squares fitting of a wave-front distortion estimate
to an array of phase-difference measurements, J. Opt. Soc. Am.,
67, 370–375, 1977.

García-Márquez, J., Malacara, D., and Servín, M., Limit to the
degree of asphericity when testing wavefronts using digital
interferometry Proc. SPIE, 2263, 274–281, 1995.

Gåsvik, K.J., Moiré technique by means of digital image processing,
Appl. Opt., 22, 3543–3548, 1983.

Geary, J.M., Real-time interferogram simulation, Opt. Eng., 18,
39–45, 1979.

Geary, J.M., Holmes, D.H., and Zeringue, Z., Real-time interfero-
gram simulation, in Optical Interferograms: Reduction and
Interpretation, American Society for Testing and Materials,
West Conshohocken, PA, 1978.

Ghozeil, I., Hartmann and other screen tests, in Optical Shop Test-
ing, Malacara, D., Ed., John Wiley & Sons, New York, 1992.

Glatt, I. and Kafri, O., Moiré deflectometry: ray tracing interferom-
etry, Opt. Lasers Eng., 8, 227–320, 1988.

Gordon, S.K. and Jacobs, S.F., Modification of inexpensive multi-
mode lasers to produce a stabilized single-frequency beam,
Appl. Opt., 13, 231–231, 1974.

Gushov, V.I. and Solodkin, Y.N., Automatic processing of fringe pat-
terns in integer interferometers, Opt. Lasers Eng., 14, 311–324,
1991.

Harasaki, A. and Wyant, J.C., Fringe modulation skewing effect in
white-light vertical scanning interferometry, Appl. Opt., 39,
2101–2106, 2000.

Harasaki, A., Schmit, J., and Wyant, J.C., Improved vertical scan-
ning interferometry, Appl. Opt., 39, 2107–2115, 2000.



Hardy, J.W. and MacGovern, A.J., Shearing interferometry: a flexible
technique for wavefront measuring, Proc. SPIE, 816, 180–195,
1987.

Hariharan, P. and Roy, M., White-light phase-stepping interferom-
etry for surface profiling, J. Mod. Optics, 41, 2197–2201, 1994.

Horman, M.H., An application of wavefront reconstruction to inter-
ferometry, Appl. Opt., 4, 333–336, 1965.

Houston, J.B., Jr., Buccini, C.J., and O’Neill, P.K., A laser unequal
path interferometer for the optical shop, Appl. Opt., 6, 1237, 1967.

Hudgin, R.H., Wave-front reconstruction for compensated imaging,
J. Opt. Soc. Am,. 67, 375–378, 1977.

Hung, Y.Y., Shearography: a new optical method for strain measure-
ment and nondestructive testing, Opt. Eng., 21, 391–395, 1982.

Hunt, B.R., Matrix formulation of the reconstruction of phase values
from phase differences, J. Opt. Soc. Am., 69, 393–399, 1979.

Idesawa, M., Yatagai, T., and Soma, T., Scanning moiré method and
automatic measurement of 3D shapes, Appl. Opt., 16, 2152–2162,
1977.

Jaerisch, W. and Makosch, G., Optical contour mapping of surfaces,
Appl. Opt., 12, 1552–1557, 1973.

Józwicki, R., Telecentricity of the interferometric imaging system
and its importance in the measuring accuracy, Optica Applicata,
19, 469–475, 1989.

Józwicki, R., Propagation of an aberrated wave with nonuniform
amplitude distribution and its influence upon the interferomet-
ric measurement accuracy, Optica Applicata, 20, 229–252, 1990.

Kafri, O., Noncoherent method for mapping phase objects, Opt. Lett.,
5, 555–557, 1980.

Kafri, O., High sensitivity moiré deflectometry using a telescope,
Appl. Opt., 20, 3098–3100, 1981.

Kafri, O., Fundamental limit on the accuracy in interferometers,
Opt. Lett., 14, 657–658, 1989.

Kingslake, R., The interferometer patterns due to the primary aber-
rations, Trans. Opt. Soc., 27, 94, 1925–1926.



Kuchel, M., The new Zeiss interferometer, Proc. SPIE, 1332, 655–663,
1990.

Löfdahl, M.T. and Eriksson, H., Algorithm for resolving 2π ambigu-
ities in interferometric measurements by use of multiple wave-
lengths, Opt. Eng., 40, 984–990, 2001.

Malacara, D., Ed., Optical Shop Testing, 2nd ed., John Wiley & Sons,
New York, 1992.

Malacara, D. and Menchaca, C., Imaging of the wavefront under
test in interferometry, Proc. SPIE, 540, 34–40, 1985.

Malacara-Hernández, D., Malacara-Hernández, Z., and Servín, M.,
Digitization of interferograms of aspheric wavefronts, Opt. Eng.,
35, 2102–2105, 1996.

Mantravadi, M.V., Lateral shearing interferometers, in Optical Shop
Testing, Malacara D., Ed., John Wiley & Sons, Inc., New York,
1992.

Murty, M.V.R.K., The use of a single plane parallel plate as a lateral
shearing interferometer with a visible gas laser source, Appl.
Opt., 3, 531–351, 1964.

Morokuma, T., Neflen, K.F., Lawrence, T.R., and Klucher, T.M., Inter-
ference fringes with a long path difference using He–Ne laser,
J. Opt. Soc. Am., 53, 394, 1963.

Ning, Y., Grattan, K.T.V., Meggitt, B.T., and Palmer, A.W., Charac-
teristics of laser diodes for interferometric use, Appl. Opt., 28,
3657–3661, 1989.

Noll, R.J., Phase estimates from slope-type wavefront sensors, J.
Opt. Soc. Am., 68, 139–140, 1978.

Offner, A. and Malacara, D., Null tests using compensators, in Opti-
cal Shop Testing, Malacara, D., Ed., John Wiley & Sons, New
York, 1992.

Okuda, S., Nomura, T., Kamiya, K., Miyashiro, H., Yoshikawa, K.,
and Tashiro, H., High-precision analysis of a lateral shearing
interferogram by use of the integration method and polynomi-
als, Appl. Opt., 39, 5179–5186, 2000.

Omura, K. and Yatagai, T., Phase measuring Ronchi test, Appl. Opt.,
27, 523–528, 1988.



Ono, A., Aspherical mirror testing with an area detector array, Appl.
Opt., 26, 1998–2004, 1987.

Onodera, R. and Ishii, Y., Phase-extraction analysis of laser-diode
phase-shifting interferometry that is insensitive to changes in
laser power, J. Opt. Soc. Am. A, 13, 139–146, 1996.

Onodera, R. and Ishii, Y., Two-wavelength interferometry based on
a Fourier-transform technique, Proc. SPIE, 3749, 430–431,
1999.

Parker, R.J., Surface topography of nonoptical surfaces by oblique
projection of fringes from diffraction gratings, Opt. Acta, 25,
793–799, 1978.

Patorski, K., Moiré methods in interferometry, Opt. Lasers Eng., 8,
147–170, 1988.

Pirodda, L., Shadow and projection moiré techniques for absolute
and relative mapping of surface shapes, Opt. Eng., 21, 640–649,
1982.

Polhemus, C., Two-wavelength interferometry, Appl. Opt., 12,
2071–2078, 1973.

Reid, G.T., Moiré fringes in metrology, Opt. Lasers Eng., 5, 63–93,
1984.

Rayleigh, Lord, Philos. Mag., 11, 196, 1881.

Rodriguez-Vera, R., Kerr, D., and Mendoza-Santoyo, F., Three-
dimensional contouring of diffuse objects by Talbot projected
fringes, J. Mod. Opt., 38, 1935–1945, 1991.

Reid, G.T., Moiré fringes in metrology, Opt. Lasers Eng., 5, 63–93,
1984.

Rimmer, M.P., Method for evaluating lateral shearing interferome-
ter, Appl. Opt., 13, 623–629, 1974.

Rimmer, M.P. and Wyant, J.C., Evaluation of large aberrations using
a lateral shear interferometer having variable shear, Appl. Opt.,
14, 142–150, 1975.

Rubinstein, J. and Wolansky, G., Reconstruction of surfaces from
ray data, Opt. Rev., 8, 281–283, 2001.



Saunders, J.B., Measurement of wavefronts without a reference
standard: the wavefront shearing interferometer, J. Res. Natl.
Bur. Stand., 65B, 239, 1961.

Sciammarella, C.A., The moiré method: a review, Exp. Mech., 22,
418–433, 1982.

Selberg, L.A., Interferometer accuracy and precision, Proc. SPIE,
749, 8–18, 1987.

Seligson, J.L., Callari, C.A., Greivenkamp, J.E., and Ward, J.W.,
Stability of lateral-shearing heterodyne Twyman–Green inter-
ferometer, Opt. Eng., 23, 353–356, 1984.

Servín, M., Malacara, D., and Marroquín, J.L., Wave-front recovery
from two orthogonal sheared interferograms, Appl. Opt., 35,
4343–4348, 1996.

Slomba, A.F. and Figoski, J.W., A coaxial interferometer with low
mapping distortion, Proc. SPIE, 153, 156–161, 1978.

Stricker, J., Electronic heterodyne readout of fringes in moiré deflec-
tometry, Opt. Lett., 10, 247–249, 1985.

Suganuma, M. and Yoshisawa, T., Three-dimensional shape analysis
by use of a projected grating image, Opt. Eng., 30, 1529–1533,
1991.

Takasaki, H., Moiré topography, Appl. Opt., 9, 1467–1472, 1970.

Takasaki, H., Moiré topography, Appl. Opt., 12, 845–850, 1973.

Takeda, M., Fringe formula for projection-type moiré topography,
Opt. Lasers Eng., 3, 45–52, 1982.

Takeda, M. and Kobayashi, S., Lateral aberration measurements
with a digital Talbot interferometer, Appl. Opt., 23, 1760–1764,
1984.

Talbot, W.H.F., Facts relating to optical science, Phil. Mag., 9, 401,
1836.

Thikonov, A.N., Solution of incorrectly formulated problems and the
regularization method, Sov. Math. Dokl., 4, 1035–1038, 1963.

Twyman, F., Correction of optical surfaces, Astrophys. J., 48, 256,
1918.



Vazquez-Montiel, S., Sánchez-Escobar, J.J., and Fuentes, O., Obtain-
ing the phase of an interferogram by use of an evolution strat-
egy, part I, Appl. Opt., 41, 3448–3452, 2002.

Vlad, V., Popa, D., and Apostol, I., Computer moiré deflectometry
using the Talbot effect, Opt. Eng., 30, 300–306, 1991.

Wan, D.-S. and Lin, D.-T., Ronchi test and a new phase reduction
algorithm, Appl. Opt., 29, 3255–3265, 1990.

Wang, G.-Y. and Ling, X.-P., Accuracy of fringe pattern analysis,
Proc. SPIE, 1163, 251–257, 1989.

Welsh, B.M., Ellerbroek, B.L., Roggemann, M.C., and Pennington,
T.L., Fundamental performance comparison of a Hartmann and
a shearing interferometer wave-front sensor, Appl. Opt., 34,
4186–4195, 1995.

Wyant, J.C., Testing aspherics using two-wavelength holography,
Appl. Opt., 10, 2113–2118, 1971.

Wyant, J.C., How to extend interferometry for rough-surface tests,
Laser Focus World., September, 131–135, 1993.

Wyant, J.C., Oreb, B.F., and Hariharan, P., Testing aspherics using
two wavelength holography: use of digital electronic techniques,
Appl. Opt., 23, 4020–4023, 1984.

Yang, T.-S. and Oh, J.H., Identification of primary aberrations on a
lateral shearing interferogram of optical components using neu-
ral network, Opt. Eng., 40, 2771–2779, 2001.

Yatagai, T., Fringe scanning Ronchi test for aspherical surfaces,
Appl. Opt., 23, 3676–3679, 1984.

Yatagai, T. and Kanou, T., Aspherical surface testing with shearing
interferometer using fringe scanning detection method, Opt.
Eng., 23, 357–360, 1984.

Yokoseki, S. and Susuki, T., Shearing interferometer using the grat-
ing as the beam splitter, part 1, Appl. Opt., 10, 1575–1580,
1971a.

Yokoseki, S. and Susuki, T., Shearing interferometer using the grat-
ing as the beam splitter, part 2, Appl. Opt., 10, 1690–1693,
1971b.



2

Fourier Theory Review

2.1 INTRODUCTION

Fourier theory is an important mathematical tool for the
digital processing of interferograms; hence, it is logical to
begin this chapter with a review of this theory. Extensive
treatments of this theory may be found in many textbooks,
such as those by Bracewell (1986) and by Gaskill (1978). The
topic of digital processing of images has been also treated in
several textbooks — for example, Gonzales and Wintz (1987),
Jain (1989), and Pratt (1978).

2.1.1 Complex Functions

Complex functions are very important tools in Fourier theory.
Before beginning the study of Fourier theory let us review a
brief summary of complex functions. A complex function may
be plotted in a complex plane by means of a so-called phasor
diagram, where the real part of the function is plotted on the
horizontal axis and the imaginary part on the vertical axis.
A complex function may be written as:

(2.1)g x g x i g x( ) Re ( ) Im ( )= { } + { }



where Re(g) stands for the real part of g and Im(g) stands for
the imaginary part of g.

The phase of this complex number is the angle with
respect to the horizontal axis of the line from the origin to
the complex function value being plotted. Thus, the phase of
any complex function g(x) may be obtained with:

(2.2)

This phase has a wrapping effect, however, because if both
the real and the imaginary parts are negative, the ratio is the
same as if both quantities are positive. Thus, this phase is
within the limits 0 ≤ φ ≤ π. The magnitude of this complex
number is defined by:

(2.3)

which is always positive. This complex function may also be
written as:

(2.4)

where Am(g(x)) is the amplitude of the complex function or,
in terms of the magnitude |g(x)|:

(2.5)

The phase φ has a value between 0 and 2π.
To understand the difference between these two represen-

tations of the complex function, let us consider the complex
function represented in Figure 2.1. In the complex plane in
Figure 2.1a, the complex function passes through the origin.
Figure 2.1b shows the amplitude and phase vs. position s along
the function, and Figure 2.1c provides a plot of the magnitude
and phase vs. the distance s. We can see that when the function
passes through the origin of the complex plane, the amplitude
and its derivative (slope) as well as the phase are continuous.
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On the other hand, we see that neither the derivative of the
magnitude nor its corresponding phase is continuous.

Explained another way, let us consider, for example, the
real function g(x) = x, which is a horizontal line along the axis
on the complex plane. Using this expression, it has to be
written as g(x) = |x | for x ≥ 0 and as g(x) = | x | exp(π) for x ≤ 0.
To avoid this discontinuity, both on the derivative of the func-
tion and on the phase, we use the amplitude instead of the
magnitude, in which case the derivative of the function g(x)
and the phase will be continuous for all values of x. This
amplitude is the equivalent of the radial coordinate in polar
coordinates. A change in the sign of the amplitude is equivalent
to a change of π in the phase.

The phase, as plotted in the phasor diagram, of a periodic
real function such as the functions sinφ and cosφ, is zero,
because the function is real; however, another concept of phase
φ is associated with real sinusoidal functions. Frequently, we
refer to these real functions as stationary waves, and their
phase in the phasor diagram is zero. On the other hand, on the
phase diagram the plot of the function expiφ = cosφ + i sinφ is
a unit circle and its phase may be represented there. For this
reason, this function is sometimes called a traveling wave.

Figure 2.1 (a) Plotting a complex function that passes through
the origin in the complex plane, (b) amplitude and phase vs. s, and
(c) magnitude and phase vs. s.

(a) (b) (c)

180°

360°

−180°

−360°−360°

−180°

180°

360°

0°0

PhasePhase

MagnitudeAmplitude

ss

ss

s



These two phases — the phase of a complex function and the
phase of a real periodic function — are slightly different con-
cepts but they are quite related to each other. In general, it is
not necessary to specify which phase we are considering
because normally that is clear from the context.

2.2 FOURIER SERIES

A real, infinitely extended periodic function with fundamental
frequency f1 may be decomposed into a sum of real (stationary)
sinusoidal functions with frequencies that are multiples of the
fundamental, referred to as harmonics. Thus, we may write:

(2.6)

The coefficients an and bn are the amplitudes of each of the
sinusoidal components. If the function g(x) is real, these coef-
ficients are also real. Multiplying this expression first, by
cos(2πmf1x) and then, by sin(2πmf1x) and making use of the
well-known orthogonality properties for the trigonometric
functions we may easily obtain, after integrating for a full
period, an analytical expression for the coefficients which may
be calculated from g(x) by:

(2.7)

and

(2.8)

where the fundamental frequency is equal to twice the
inverse of the period length 2x0 (f1 = 1/2x0). We may see that
the frequency components have a constant separation equal
to the fundamental frequency f1. If the function is symmet-
rical (i.e., g(x) = g(–x)), then only the coefficients an may be
different from zero, but, if the function is antisymmetrical
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(i.e., g(x) = –g(–x)), then only the coefficients bn may differ from
zero. If the function is asymmetrical, both coefficients an and
bn may be different from zero. The coefficients an and bn always
correspond to positive frequencies. Figure 2.2 shows some com-
mon periodical functions and their Fourier transforms.

Fourier series may also be written in terms of complex
functions. The periodic functions just described are repre-
sented by a sum of real (stationary) sinusoidal functions. In
order to describe complex functions, the coefficients an and bn

must be complex. An equivalent expression in terms of complex
(traveling) sinusoidal functions exp(i2πnf1x) and exp(–i2πnf1x)
using complex exponential functions instead of real trigono-
metric functions is:

(2.9)

where the coefficients cn may be real, imaginary, or complex.
These exponential functions are also orthogonal, as are the
trigonometric functions. The coefficients can be calculated as:

Figure 2.2 Some periodical functions and their spectra.
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(2.10)

In this case, the coefficients cn correspond to positive (phase
is increasing in the negative direction of x) as well as to
negative (phase is increasing in the positive direction of x)
frequencies. Thus, the number n may be positive as well as
negative. In general, the coefficients cn are complex. If the
function g(x) is symmetrical, the coefficients cn are real, with
cn = c–n = 2an. On the other hand, if the function g(x) is
antisymmetrical, the coefficients cn are imaginary, with cn =
–c-n.= –2ibn. Table 2.1 shows some periodical functions and
their coefficients an and bn.

2.3 FOURIER TRANSFORMS

If the period of the function g(x) is increased, separation of
the sinusoidal components decreases. In the limit when the
period becomes infinity, the frequency interval among har-
monics tends to zero. Any nonperiodical function may be
regarded as a periodical function with an infinite period. Thus,
a nonperiodical continuous function may be represented by
an infinite number of sinusoidal functions, transforming the
series in Equation 2.5 into an integral, where the frequency
separation f1 becomes df. This leads us to the concept of the
Fourier transform.

Let g(x) be a continuous function of a real variable x. The
Fourier transform of g(x) is G(f), defined by:

(2.11)

This Fourier transform function G(f) is also called the ampli-
tude spectrum of g(x), and its magnitude is the Fourier spec-
trum of the function g(x). This Fourier transform of g(x) may
also be represented by F{g(x)}. For example, a perfectly sinu-
soidal function g(x) without any constant term added has a
single frequency component. The spectrum is a pair of Dirac
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delta functions located symmetrically with respect to the ori-
gin, at its corresponding frequency. Given G(f), the function
g(x) may be obtained by its inverse Fourier transform, defined
by:

(2.12)

We may notice that Equation 2.10 is similar to Equation
2.11 and that Equation 2.12 is similar to Equation 2.9 when

TABLE 2.1 Some Periodical Functions and Their 
Coefficients an and bn
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Triangular:

Square:

Comb:

g x A B f x( ) cos= + ( )2 1π a A

a B b

a n

n

n

0

1

2

0

0 2

=

= =

= ≥

;

;

g x A B f x x x

g x A B f x x x

( ) ;

( ) ;

= + + − ≤ ≤

= + − ≤ ≤

( )
( )
1 4 0

1 4 0

1 0

1 0

a A b

a
B

n
n

a n

n

n

n

0

2

2 0

2

0

= =

=

=

;

;

;

π
odd

even

g x A B x x

g x A B x x

( ) ;

( ) ;

= − − ≤ ≤

= + ≤ ≤
0

0

0

0

a A

b
B

n
n

b n

n

n

0 2

2

0

=

=

=
π

;

;

odd

even

g x x nx
n

( ) = −( )
=−∞

∞

∑δ 0
a

f
b

a f nf n

n

n

0

1

2
0

0

= =

= − ≠( )

δ

δ

( )
;

;

g x G f e fi fx( ) ( )=
−∞

∞

∫ 2π d



the fundamental frequency tends to zero. Here, x is the space
variable, and its domain is referred to as the space domain.
On the other hand, f is the frequency variable, and its domain
is the frequency or Fourier domain. A Fourier transform pair
is defined by Equations 2.11 and 2.12. Both functions, g(x)
and G(f) may be real or complex. Figure 2.3 and Table 2.2
provide some examples of Fourier transform pairs.

The magnitude |G(f)| as we mentioned before, is called
the Fourier spectrum of g(x), and the square of this magnitude
is the power spectrum, sometimes also known as the spectral
density.

The phase φ at the origin (x = 0) of a real cosinusoidal
function, cos(ωSx + φ), is equal to the complex phase at the
origin of its spectral component expi(ωSx + φ), which in turn
is equal to the complex phase of the Fourier transform [δ(ω –
ωS)expiφ] of the cosine function at the frequency ω = ωS. An
important and useful conclusion is that the phase of the real
cosinusoidal Fourier components of a real function is equal to
the complex phase of its Fourier transform at the frequency
of that component.

Figure 2.3 Some Fourier transform pairs.
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2.3.1 Parseval Theorem

An important theorem is the Parseval theorem, which may
be written as:

(2.13)

This theorem may be described by saying that the total power
in the space domain is equal to the total power in the fre-
quency domain.

2.3.2 Central Ordinate Theorem

From Equation 2.11 we can see that

TABLE 2.2 Some Fourier Transform Pairs

Space Domain Function Frequency Domain Function

Dirac delta (impulse) function: Constant:

Square function: Sinc function:

Gaussian modulated wave: Gaussian function:

Pair of square functions: Sinc modulated wave:
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(2.14)

Thus, the integral of a function is equal to the central ordinate
of the Fourier transform. An immediate consequence is that,
because any lateral translation of the function g(x) does not
change the area, the central ordinate value also does not
change.

2.3.3 Translation Property

Another useful property of the Fourier transform is the trans-
lation property, which states that a translation of the input
function g(x) changes the phase of the transformed function
as follows:

(2.15)

or in the frequency domain:

(2.16)

A consequence of this theorem is that the Fourier transform
of any function with any kind of symmetry can be made to be
real, imaginary, or complex by means of a proper translation
of the function f(x).

2.3.4 Derivative Theorem

If g′(x) is the derivative of g(x), then the Fourier transform of
this derivative is given by:

(2.17)
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or

(2.18)

Thus, the Fourier transform of the derivative of function g(x)
is equal to the Fourier transform of the function multiplied
by i2πf. Now, using the convolution expression in Equation
2.25, to be described below, we may write:

(2.19)

with

(2.20)

This means that the derivative of g(x) may be calculated with
the convolution of this function with the function h(x). By
taking the inverse Fourier transform, this function h(x) is
equal to:

(2.21)

2.3.5 Symmetry Properties of Fourier Transforms

A function g(x) is symmetric or even if g(x) = g(–x), antisym-
metric or odd if g(x) = –g(–x), or asymmetric if it is neither
symmetric nor antisymmetric. An asymmetric function may
always be expressed by the sum of a symmetric function plus
an antisymmetric function. A complex function is Hermitian
if the real part is symmetrical and the imaginary part is
antisymmetrical. For example, the function exp(ix) is Hermi-
tian. The complex function is anti-Hermitian if the real part
is antisymmetrical and the imaginary part symmetrical.
These definitions are illustrated in Figure 2.4.

The Fourier transform has many interesting properties,
as shown in Table 2.3. The fact that the Fourier transform of
a real asymmetrical function is Hermitian is referred to as
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the Hermitian property of the spectrum of real functions. A
few more properties of Fourier transforms, derived from their
symmetry properties, include:

1. If the function g(x) is complex — of the form expiφ(x),
where φ(x) is positive for all values of x (the sign of
the imaginary part is the same as the sign for the
real part for all values of x) — then the spectral
function G(f) is different from zero only for positive
values of f.

2. If the function g(x) is complex — of the form expiφ(x),
where φ(x) is negative for all values of x (the sign of
the imaginary part is opposite the sign for the real
part for all values of x) — then the spectral function
G(f) is different from zero only for negative values of f.

3. It is easy to show that for any complex function g(x):

(2.22)

where the symbol * stands for the complex conjugate.

A particular and important case is when the function g(x) is
real and we can write:

Figure 2.4 Possible symmetries of a function.
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(2.23)

which implies that

(2.24)

From this expression, we may conclude that if the function
g(x) is real, as in any image to be digitized, the Fourier trans-
form is Hermitian and that the Fourier spectrum (or magni-
tude) |G(f)| is symmetrical.

2.4 THE CONVOLUTION OF TWO FUNCTIONS

The convolution operation of the two functions g(x) and h(x)
is defined by:

(2.25)

where the symbol * denotes the convolution operator. It may
be seen that the convolution is commutative; that is,

(2.26)

TABLE 2.3 Symmetry Properties of Fourier Transforms

g(x) G(f)

Real Symmetrical Real Symmetrical
Antisymmetrical Imaginary Antisymmetrical
Asymmetrical Complex Hermitian

Imaginary Symmetrical Imaginary Symmetrical
Antisymmetrical Real Antisymmetrical
Asymmetric Complex Anti-Hermitian

Complex Symmetrical Complex Symmetrical
Antisymmetrical Complex Antisymmetrical
Hermitian Real Asymmetrical
Anti-Hermitian Imaginary Asymmetrical
Asymmetrical Complex Asymmetrical

G f G f G f G f( ) ( ); ( ) ( )= − − =∗ ∗

G f G f( ) ( )= −∗

g x h x g h x( ) ( ) ( ) ( )∗ = −
−∞

∞

∫ α α αd

g x h x h x g x( ) ( ) ( ) ( )∗ = ∗



A property of the convolution operation is that the Fourier
transform of the product of two functions is equal to the
convolution of the Fourier transforms of the two functions:

(2.27)

or

(2.28)

and, conversely, the Fourier transform of the convolution of
two functions is equal to the product of the Fourier transforms
of the two functions:

(2.29)

or

(2.30)

Figure 2.5 shows the product of the function g(x) and the comb
function h(x), as well as the convolution of the Fourier trans-
forms of these functions. The convolution may be interpreted
in several ways, and the following text provides two different
models for such interpretation. One of these models is used
more frequently in electronics, the other in optics, but they
are equivalent.

Figure 2.5 Product of a function g(x) by a comb function h(x) and
the convolution of their Fourier transforms.
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1. This interpretation of the convolution operation is
typically used in optics to study the resolving power
of optical instruments. It can be explained by the
following four steps, as shown in Figure 2.6a:
• The α-axis (object) is divided into many extremely

narrow intervals of equal width dα. The narrow
interval at any position α is selected.

• The function h(x) is placed at the corresponding
point x = α in the convolution space (image), without
being reversed, to obtain the function h(x – α). The
height is then made directly proportional to the
value of g(x) by multiplication of the two functions.

• These two steps are repeated for all narrow inter-
vals in the function space.

• All of the g(x) h(x – α)dα functions in the convolu-
tion space are added by integration.

2. The second interpretation is commonly used in elec-
tronics to study the signal distortion of electronic
amplifiers. In this application, variable x is the time.
This approach may be explained as follows (see Fig-
ure 2.6b):
• A value of x is selected in the domain of the con-

volution (output signal).

Figure 2.6 The convolution of two functions.
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• The function h(α) is placed at point α = x in the
function space (input signal), with a reversed ori-
entation, to obtain h(x – α).

• An average of function g(α), weighted by the func-
tion h(x – α), can be obtained by first multiplying
function g(α) by the function h(x – α) and then
integrating.

• The result of the integration is the value of the
convolution at point x.

A property of the convolution is that the extent of the convo-
lution is equal to the sum of the two function bases being
convolved.

2.4.1 Filtering by Convolution

An important application of the convolution operation is low-
pass, band-pass, or high-pass filtering of function g(x) by
means of a filter function h(x). This filtering property of the
convolution operation may be easily understood if we use
Equations 2.27 and 2.25 to write:

(2.31)

We see that the filtering or convolution operation is equivalent
to multiplying the Fourier transform of the function to be
filtered by the Fourier transform of the filtering function and
then obtaining the inverse Fourier transform of the product.
If the filtering function h(x) has numerous low frequencies
and no high frequencies, we have a low-pass filter. On the
other hand, if the filtering function h(x) has a large number
of high frequencies and no low frequencies, we have a high-
pass filter. This convolution process, with the associated low-
pass filtering, is illustrated in Figure 2.6.

Let us consider the special case of the convolution of a
sinusoidal real function g(x) formed by the sum of a sine and
a cosine function with filter function h(x). Then, we obtain the
filtered function :
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(2.32)

This expression, which is a function of x, must have a zero
value for all values of x. The value of this function at the
origin (x = 0) is:

(2.33)

The real sinusoidal function g(x) with frequency f has
two Fourier components, one with frequency f and the other
with frequency –f. If only the first term (sine) is present in
g(x), then the signal is antisymmetric and the two Fourier
components have the same magnitudes but opposite signs. In
this case, if the signal is filtered with a filter function with
symmetrical values at the frequency to be filtered, then we
can see that the desired zero value is obtained at the origin
but not at all values of x. If only the second term (cosine) is
present in g(x), then the signal is symmetrical and the two
Fourier components have the same magnitudes and the same
signs. In this case, if the signal is filtered with a filter function
with antisymmetrical values at the frequency to be filtered,
then the correct filtered value of zero is again obtained only
at the origin.

In the most general case, when both the sine and cosine
functions are present in g(x), the magnitudes and signs of the
two Fourier components may be different. Generally, the filter-
ing function must have zero values at both Fourier components.

2.5 THE CROSS-CORRELATION 
OF TWO FUNCTIONS

The cross-correlation operation of the two functions g(x) and
h(x) is similar to the convolution, and it is defined by:

(2.34)
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where the symbol ⊗ denotes cross-correlation. This operation
is not commutative but satisfies the relation:

(2.35)

A property of the cross-correlation operation is that the Fou-
rier transform of the product of the two functions is equal to
the cross-correlation of the Fourier transforms:

(2.36)

and, conversely, the Fourier transform of the cross-correlation
is equal to the product of the Fourier transforms:

(2.37)

The cross-correlation is related to the convolution by:

(2.38)

As the convolution operation, the cross-correlation may be
used to remove high-frequency Fourier components from a
function g(x) by means of a filter function h(x).

2.6 SAMPLING THEOREM

Let us consider a band-limited real function g(x) whose spec-
trum is G(f). The width, Δf, of this spectrum is equal to the
maximum frequency contained in the function. To sample the
function g(x) we need to multiply this function by the comb
function h(x), for which the spectrum H(f) is also a comb func-
tion, as shown in Figure 2.5. The fundamental frequency of the
comb function h(x) is defined as the sampling frequency. A
direct consequence of the convolution theorem is that the spec-
trum of this sampled function (a product of the two functions)
is the convolution of the two Fourier transforms G(f) and H(f).

In Figure 2.7 we can see that, if the sampling frequency
of the function h(x) decreases, the spectral elements in the
convolution of the functions G(f) and H(f) get closer to each
other. If these spectral elements are completely separated
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without any overlapping, the inverse Fourier transform recov-
ers the original function with full detail and frequency con-
tent. If the spectral elements overlap each other, as in Figure
2.7c, the process is not reversible. The original function may
not be fully recovered after sampling if the spectral elements
do overlap or even touch each other; thus, the sampling the-
orem requirements are violated when the spectral elements
are just touching each other, as shown in Figure 2.7b.

The total width (2Δf) of the base of the spectral elements
is smaller than twice the maximum frequency (fmax) present at
the signal or function being sampled, as defined by its Fourier
transform. On the other hand, the frequency separation
between the peaks in the Fourier transform of the comb func-
tion is equal to the sampling frequency. Hence, the sampling
frequency fS = 1/Δx must be greater than half the maximum
frequency fmax contained in the signal or function to be sampled:

(2.39)

Figure 2.7 Sampling of a function with different sampling
frequencies: (a) above the Nyquist limit, (b) just below the Nyquist
limit, and (c) below the Nyquist limit.
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This condition is known as the Whittaker–Shannon sampling
theorem, and the minimum sampling frequency is referred to
as the Nyquist frequency (Nyquist, 1928). Alternatively, we
can say that when a signal has been sampled the maximum
frequency contained in this sampled signal is equal to half
the sampling frequency. If the spectral elements overlap,
recovery of the sampled function is not perfect, and a phe-
nomenon known as aliasing occurs.

In this discussion we have assumed that the sampling
function h(x) extends from –∞ to +∞ and that the sampled
function is band limited. In most practical cases, neither of
these assumptions is true. If the sampling extends only from
–x0 to x0, then for the sake of simplicity we may consider that
the sampling points — that is, the function h(x) — extend from
–∞ to + ∞ but that the function to be sampled, g(x), is multiplied
by a window function, w(x), as shown in Figure 2.8. Then, by
the convolution theorem, the spectrum of the product of these
two functions is the convolution of its Fourier transforms. The
Fourier transform of the window function is the sinc function,
for which the spectrum extends from –∞ to +∞. Thus, the
spectrum elements of the windowed sampled function neces-
sarily have some overlap. The important conclusion here is

Figure 2.8 Illustration of the sampling theorem with a limiting
aperture (window).
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that a bounded sampling function (or an interval-limited sam-
pling function) is always imperfect, as perfect recovery of the
function is not possible.

2.7 SAMPLING OF A PERIODICAL FUNCTION

In only one important case will limited sampling lead to
perfect recovery of the function: when the function is periodic
(not necessarily sinusoidal) and band limited (a highest order
harmonic frequency must exist), with a fundamental spatial
period equal to the length of the total sampling interval. If
we assume that the function is periodic and band limited,
then it may be represented by a Fourier series with a finite
number of terms. Due to the periodicity of the function we
may assume that the sampling pattern repeats itself outside
the sampling interval, as shown in Figure 2.9. If the sampling
points are equally spaced but not uniformly distributed in the
interval (Figure 2.9a) and the sampling pattern is repeated,

Figure 2.9 Sampling of a periodical function with a finite sampling
interval.
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the entire distribution of virtual sampling points (empty
points) is not uniform. Suppose, however, that the N sampling
points are uniformly and equally spaced (Figure 2.9b) and
that phases φn is given by:

(2.40)

where φ0 is the phase at the first sampling point (n = 1). The
virtual sampling points in the entire infinite interval will be
equally distributed, and a sampling in an interval with length
equal to the period of the fundamental is enough to obtain
full recovery of the function. Of course, we are also assuming
that the sampling frequency is greater than twice the maxi-
mum frequency contained in the function.

The advantage of extrapolating the function in this man-
ner, outside the sampling interval, is that the sampling may
be mathematically considered as extending to the entire inter-
val from –∞ to +∞ and we can be sure that the sampling
theorem is strictly satisfied.

An interesting example of a periodical and bandwidth-
limited function is a pure sinusoidal function. If we sample a
sinusoidal function, the sampling theorem requires a greater
sampling frequency (equal is not acceptable) than twice the
frequency of the sinusoidal function. Taking two sampling
points in the period length makes the sampling frequency equal
to twice the frequency of the sampled function. If the sampling
interval is much larger than one period, we could sample with
a frequency just slightly greater than this required minimum
of two points per period; however, if the sampling interval is
just one period (as in most phase-shifting algorithms), we need
a minimum of three sampling points per period.

Figure 2.10a shows a sinusoidal signal sampled with a
frequency (fS) much higher than twice the frequency (f) of this
signal. Figure 2.10b shows the sampling with three points per
period. Figure 2.10c shows a smaller sampling frequency that
still satisfies the sampling theorem requirements. Figure
2.10d illustrates a sampling frequency equal to two, just out-
side the sampling theorem requirements; we can see that the

φ π φn
n
N

= − +2 1
0

( )



function reconstruction can be achieved in several ways (two
of which are illustrated here). Finally, Figure 2.10e shows a
sampling frequency less than twice the frequency of the sinu-
soidal function, with the aliasing effect clearly shown. With
aliasing, instead of obtaining a reproduction of the signal with
frequency f, a false signal with a frequency of fS – f and the
same phase at the origin as the signal appears. Because the
requirements of the sampling theorem were violated, the fre-
quency of this aliased wave is smaller than the signal fre-
quency. Another way to visualize these concepts is by
analyzing the same cases in the Fourier space, as shown in
Figure 2.11. Each of these spectra corresponds to the same
cases in Figure 2.10.

2.7.1 Sampling of a Periodical Function 
with Interval Averaging

We have studied the sampling of a periodical function using
a detector that measures the signal at one value of the phase;
however, most real detectors cannot measure the phase at one

(a) (b)

(c) (d)

(e)

Figure 2.10 Sampling of a periodical function with a finite
sampling interval: (a) frequency higher than twice the frequency of
the function; (b) three points per period; (c) smaller sampling
frequency, satisfying the sampling theorem; (d) sampling frequency
equal to two; (e) sampling frequency lower than twice the frequency
of the sinusoidal function.



value of the phase but instead take the average value in one
small phase interval. This may be the case in space signals
as well as in time signals. In the case of a time-varying signal,
as in phase-shifting interferometry, the phase may be contin-
ually changing while the measurements are being taken; thus,
the number being read is the average of the irradiance during
the time spent measuring. This method is frequently referred
to as bucket integration.

In the case of a space-varying signal (such as when dig-
itizing the image of sinusoidal interference fringes with a
detector array), the detector may have a significant size com-
pared to the separation between the detector elements. In this
case, the measurements are also the average of the signal
over the detector extension.

Figure 2.11 Spectra when sampling a periodical function with a
finite sampling interval (as in Figure 2.10).
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Let us consider this signal averaging shown in Figure
2.12, where signal s(x) is measured in an interval centered at
x and extending from x – x0/2 to x + x0/2. Then, the average
signal on this interval is given by:

(2.41)

thus, we obtain:

(2.42)

This result tells us that the effect of this signal averaging just
reduces the contrast of the fringes with the filtering function
sinc (x0/2). As it is to be expected, for an infinitely small
averaging interval (x0 = 0) there is no reduction in contrast;
however, for finite-size intervals, the contrast is reduced. The
sinc function has zeros at x0 = 2mπ, where m is an integer.
Thus, the first zero occurs at x0 = 2π. If the sampling detectors

Figure 2.12 Signal averaging when measuring a sinusoidal signal
in a phase interval from –x0/2 to x0/2.
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have a size equal to its separation, so that no space exists
between them (as in most practical charge-coupled device
[CCD] detectors), this corresponds to half the sampling fre-
quency allowed by the sampling theorem. In other words,
when the signal frequency is increased, the Nyquist frequency
is reached before the first zero of the contrast. Hence, at these
values of x0, when the averaging interval is a multiple of the
wavelength of the signal (spatial or temporal), the contrast is
reduced to zero and no signal is detected, but the DC compo-
nent is detected. For averaging intervals between π and 2π,
the contrast is reversed. These contrast changes are illus-
trated in Figure 2.13.

When the signal is sampled at equally spaced intervals,
there is an upper limit for the size of the averaging interval,
when the averaging intervals just touch each other. Then, the
averaging interval size is equal to the inverse of the sampling
frequency; that is, x0 = 1/fS. With this detector, at the Nyquist
limit (sampling frequency equal to twice the signal frequency)
the integration interval is equal to half the period of the signal
(x0 = π) and the contrast reduction is 2/π = 0.6366. The contrast

Figure 2.13 Contrast of a detected signal for a finite size of
integration: (a) below the Nyquist limit and small integration
interval; (b) below the Nyquist limit and large integration interval;
(c) above the Nyquist limit and small integration interval, showing
aliasing; and (d) below the Nyquist limit and large integration
interval, showing reduction and inversion in the contrast.

(a) (b)

(c) (d)



is zero when the sampling frequency is equal to signal fre-
quency f. In the digitization of images, this frequency-selective
contrast reduction (filtering) is sometimes an advantage
because it reduces the aliasing effect; however, in some inter-
ferometric applications, as described later in this book, the
aliasing effect may be useful.

2.8 FAST FOURIER TRANSFORM

The numerical computation of a Fourier transform takes an
extremely long time even for modern powerful computers.
Several algorithms were designed by various authors early in
the twentieth century, but they were not widely known. It
was not until the work of J. W. Tukey and J. W. Cooley in the
mid-1960s that one algorithm gained wide acceptance — the
fast Fourier transform (FFT). Tukey devised an algorithm to
compute the Fourier transform in a relatively short time by
eliminating unnecessary calculations, and Cooley developed
the required programming. Their work was not published, but
it aroused enough interest that several researchers began
using the algorithm. When R. L. Garwin was in need of this
algorithm, he went to see Cooley to ask about his work. Cooley
told him that he had not published it because he considered
the algorithm to be quite elementary. Eventually, however,
the Tukey–Cooley algorithm was, indeed, published and later
came to be known as the fast Fourier transform. Explanations
of this method can be found in numerous publications today
(e.g., Brigham, 1974; Hayes, 1992). Code for programs using
C language (Press et al., 1988) or Basic (Hayes, 1992) can also
be found in the literature.

Because the Fourier transform is carried out by a com-
puter, the function to be transformed must be sampled by
means of a comb sampling function so the integral becomes
a discrete sum. The discrete Fourier transform (DFT) pair is
defined by:
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and

(2.44)

The first expression may be written as:

(2.45)

where

(2.46)

We can see that the sampled function (gl) to be Fourier trans-
formed has a bounded domain contained in an array of N
points. The Fourier transform (Gk) is calculated at another
array of N points in the frequency space; thus, N multiplica-
tions must be carried out for each Gk. To calculate the entire
Fourier transform set of numbers (Gk), N2 multiplications are
necessary; this is a huge number because the number of points
N is generally quite a large number. This operation can be
written in matrix notation (Iisuka, 1987) as:

(2.47)

Hence, the discrete Fourier transform may be regarded as a
linear transform. If N points are to be sampled, then the
transform has N points. The elements of the matrix are shown
in Equation 2.47. This matrix has some interesting charac-
teristics that may be used to reduce the time required for the
matrix multiplication. Remember that the fast Fourier trans-
form is simply an algorithm that reduces the number of oper-
ations, and note that the matrix in Equation 2.47 involves N
× N multiplications and N × (N – 1) additions.
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The values of Wkl may be represented in a phasor diagram
in the complex plane as shown in Figure 2.14. All values fall
in a unit circle, and we may see that we have only N different
values. We may also notice that values at opposite sides of
the circle differ only in their sign. Points symmetrically placed
with respect to the x-axis have the same real part, and their
imaginary parts differ only in sign. Points symmetrically
placed with respect to the y-axis have the same imaginary
parts and their real parts differ only in sign.

The key property that allows us to reduce the number of
numerical operations when calculating this Fourier transform
is that a discrete Fourier transform of length N can be
expressed as the sum of two discrete Fourier transforms of
length N/2.One of the two transforms is formed by the odd
points and the other by the even points, as follows:

(2.48)

Figure 2.14 Phasor diagram representing values of Wkl for N = 8.
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where we have assumed N is even. This property is referred
to as the Danielson–Lanczos lemma. Thus, we can also write:

(2.49)

where each of these two Fourier transforms is of length N/2.
So, now we have two linear transforms which are half the
size of the original, and the total number of multiplications
has been reduced to one fourth. This fragmentation procedure
is known as decimation. After decimation, the smaller Fourier
transforms are calculated and then a recombination of the
results is performed to obtain the desired Fourier transform.

The wonderful thing is that this principle can be used
recursively. It is only necessary that the number of points in
each step is even. It is ideal when the total number of points
is N = 2M, where M is an integer. The result is that the number
of multiplications has been reduced from N2 to N log2 N.

As an example of how to find the fast Fourier transform,
let us consider Figure 2.15, where we have a signal with eight
digitized values (gi). These values are divided into two groups,
one with the odd sampled values and another with the even

Figure 2.15 Fragmentation of a digitized signal with eight values
in two parts in a successive manner to obtain eight single values.
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sampled values. Each of these groups is again divided into two,
and so on, until we have eight groups with a single value.

The next step is to find the Fourier transform of each of
the single values, which is trivial. Then, with the procedure
described earlier, the Fourier transforms of larger groups of
signal values are calculated until we obtain the desired Fourier
transform at eight frequency values, as shown in Figure 2.16.

Figure 2.17 illustrates the positions of the sampling points
in the space domain as well as the calculated points in the

Figure 2.16 Calculation of the fast Fourier transform by grouping.

Figure 2.17 Location of sampling points in a transformed
function and location of calculated points in the frequency space.
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frequency domain for a rectangular function. It is interesting
to note that if the sampling points are located only over the
top of the rectangular function the calculated points do not
have enough resolution to give the shape of the expected sinc
function. A solution is to sample a larger space in the function
domain with additional points, with zero values on both sides
of the aperture. The details of the fast Fourier transform algo-
rithms have been described by several authors — for example,
Hayes (1992), Iisuka (1987), and Press et al. (1988).
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3

Digital Image Processing

3.1 INTRODUCTION

Digital image processing is a very important field by itself
that has been treated in many textbooks (e.g., Pratt, 1978;
Gonzales and Wintz, 1987; Jain, 1989) and chapter reviews
(e.g., Morimoto, 1993). To digitize an image, it is separated
into an array of small image elements called pixels. Each of
these pixels has a different color and irradiance (gray level).
The larger the number of pixels in an image, the greater the
definition and sharpness of this image. Interferograms, as
described in Chapter 1, may be analyzed using digital pro-
cessing techniques. In this case, however, color information is
not necessary, as is clearly illustrated in the images of the
interferogram in Figure 3.1. The great advantage of digital
image processing is that the image may be improved or ana-
lyzed using many different techniques, and these techniques
may also be applied to the analysis of interferograms, as has
been described by various authors for more than 20 years
(see, for example, Kreis and Kreitlow, 1979). When digitizing
an image, the gray levels (irradiance) are digitized and trans-
formed into numbers by computer. These numbers are repre-
sented internally by binary numbers that have only ones and
zeros and are called bits. A quantity written as a series of 8
bits is a byte. A quantity may be represented by 1, 2, or even



3 bytes; thus, the total number of bits used to digitize an
image represents the number of possible gray levels that may
be used to represent the luminance level, as shown in Table
3.1.

3.2 HISTOGRAM AND GRAY-SCALE 
TRANSFORMATIONS

One of the most important properties of a digitized image is
the relative population of gray levels. We may plot this infor-
mation in a diagram where the x-axis represents the lumi-
nance of the pixel and the y-axis represents the number of
pixels in the image with that value of the gray level. Such a
diagram is referred to as a histogram. A gray level has a
discrete quantized value that is determined by the number of
bits representing it; thus, a histogram is not a continuous curve
but a set of vertical line segments. Figure 3.2 shows a digitized

(a) (b)

(c) (d)

Figure 3.1 Digitized images with different pixel separations: (a)
256 × 256 pixels, (b) 128 × 128 pixels, (c) 64 × 64 pixels, and (d) 32
× 32 pixels.



image and its histogram. The contrast of an image is reflected
by its histogram, as shown in Figure 3.3, which uses the same
image as in Figure 3.2 but with a much greater contrast, which
can be seen in the histogram. It is interesting to note that the
image of a digitized interferogram with perfectly sinusoidal
fringes, without noise, has more dark and clear pixels than

TABLE 3.1 Gray Levels According to the 
Number of Bits

Number of 
Unsigned Bytes

Number of 
Bits

Number of 
Gray Levels

1 8 256

2 16 65,536

(a) (b)

Figure 3.2 (a) Digitized image; (b) its histogram.

(a) (b)

Figure 3.3 (a) Increased contrast in a digitized image; (b) its
modified histogram.



pixels with intermediate gray levels. A histogram has two
maxima. The first corresponds to the gray level at the top of
the clear fringes, and the second corresponds to the gray levels
at the top of the dark fringes. If noise is present, the height
of the first peak in the histogram is reduced. The aspect of the
histogram depends on the number of pixels per fringe period,
as shown in Figure 3.4.

3.3 SPACE AND FREQUENCY DOMAIN 
OF INTERFEROGRAMS

When digitizing or sampling an interferogram, the selection
of the sampling points is extremely important, as indicated
by a study on the effect of sampling points on the frequency
domain by Womack (1983, 1984), who described the properties
of this frequency domain of interferograms. Let us consider
the interferogram of an aberrated wavefront with a large tilt
(linear carrier), as shown in Figure 3.5a. Let us assume that
the irradiance signal in this interferogram can be written as:

(3.1)

This irradiance has been represented here by s(x,y) instead
of I(x,y) so the Fourier transform becomes S(fx,fy). The variable
θ represents the tilt angle introducing the linear carrier, k is
equal to 2π/λ, and W(x,y) is the wavefront deformation. We
may also write this irradiance as:

(3.2)

(a) (b)

Figure 3.4 Histograms for two digitized interferograms: (a) with
20 pixels per fringe period, and (b) with 200 pixels per fringe period.
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where f0 is the spatial frequency introduced in the interfero-
gram by the tilt. This expression may also be written as:

(3.3)

where v(x,y) is the fringe visibility. If we define the function
u(x,y), sometimes referred to as the complex fringe visibility,
as:

(3.4)

we obtain:

(3.5)

Then, using the convolution theorem and Equation 2.15, the
Fourier transform of this function, s(x,y), is:

(3.6)

(a) (b)

Figure 3.5 Interferogram and its frequency domain space image:
(a) interferogram with tilt, and (b) spectrum. The second-order lobes
are due to nonlinearities.

s x y a x y
b x y
a x y

f x kW x y

a x y v x y f x kW x y

( , ) ( , )
( , )
( , )

cos ( , )

( , ) ( , )cos ( , )

= + −( )⎡
⎣
⎢

⎤
⎦
⎥

= + −( )[ ]

1 2

1 2

0

0

π

π

u x y v x y e ikW x y( , ) ( , ) ( , )= −

s x y a x y a x y
u x y i f x

u x y i f x
( , ) ( , ) . ( , )

( , )exp( )

( , )exp( )
= +

+ −

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∗

0 5
2

2

0

0

π

π

S f f A f f

A f f U f f f U f f f

x y x y

x y x y x y

, ,

. , , ,

( ) = ( ) +

+ ( ) ∗ −( ) + − −( )[ ]∗0 5 0 0



where the symbol * represents the convolution operation.
Thus, this spectrum would be concentrated in three regions
(lobes): a small one at the origin and two larger ones centered
at f0 and –f0, with a radius equal to the frequency cut-off of
U(f).

The image in the frequency domain space (spectrum) of
an interferogram without any tilt is a bright spot at the center
in the frequency space. If tilt is added to the interferogram
(Figure 3.5a), the spectrum splits in several orders (Figure
3.5b), but the three brightest components are the 0, –1, and
+1 orders. The central bright peak is at the center, and the
two smaller lobes correspond to the two first orders (–1, +1)
on each side. If the tilt is increased, the separation between
these lobes also increases.

If the interferogram is sampled with a rectangular array
of points (Figure 3.6a), the spectrum looks like that shown in
Figure 3.6b. To separate the different orders of diffraction and
to be able to reconstruct the image of the interferogram,
according to the sampling theorem the sampling point must
have a spatial frequency higher than twice the maximum
spatial frequency present in the interferogram.

3.4 DIGITAL PROCESSING OF IMAGES

In a digital image or interferogram, some types of spatial
characteristics must sometimes be detected, reinforced, or
eliminated, and some kinds of noise may have to be removed

(a) (b)

Figure 3.6 (a) Interferogram sampled with a rectangular array of
points; (b) spectrum.



using some type of averaging or spatial filtering. This section
discusses the general procedures used in the digital processing
of images, which is performed by means of a window or mask
(also known as a kernel), represented by a matrix of N × N
pixels. This mask is placed over the image to be processed,
and each hnm value in the mask is multiplied by the corre-
sponding pixels with signal (gray level) snm in the image (Fig-
ure 3.7), and all these products are added to obtain the result

as follows:

(3.7)

where M = (N – 1)/2. The result (s′) of this operation is used
to define a new number to be inserted in the new processed
image at the pixel corresponding to the center of the window.
After this, the mask is moved to the next pixel in the image
being processed, and the preceding operations are repeated
for the new position. In this manner, the entire image is
scanned. Following is a discussion of the primary image oper-
ations that can be performed.

Figure 3.7 Image processing with window or mask.
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3.4.1 Point and Line Detection

The simplest operation is detection of a pixel with a gray level
that varies too greatly from the surrounding pixels. To do so,
we take the average signal of eight pixels surrounding
another one. If this average is very different from the signal
at the pixel being considered, such a point has been identified.
This operation may be carried out with the mask shown in
Figure 3.8a. A point is said to be detected if:

(3.8)

where T is a predefined threshold value. If s′ is close to zero,
the pixel is not different from the surrounding ones. A more
complex operation is detection of a line. To detect a horizontal
line, the average of the pixels above and below the line being
considered are compared with the average of the pixels on the
line. This is accomplished using the masks shown in Figures
3.8b and 3.8c. The criterion in Equation 3.8 is also used to
determine if such a line has been detected.

3.4.2 Derivative and Laplacian Operators

The partial derivatives of the signal values with respect to x
and y may be estimated if we calculate the difference in the
signal values to two adjacent pixels:

(3.9)

Figure 3.8 Masks for point and line detection.
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The 2 × 2 Roberts masks (Figure 3.9a) can be used to evaluate
the partial derivatives in the diagonal directions; however, an
important problem with using these operators is their large
susceptibility to noise so they are seldom used. The 3 × 3
Prewitt operators (Figure 3.9b) evaluate the partial deriva-
tives in the x and y directions; they are less sensitive to noise
than the Roberts operators because they take the average of
three pixels in a line to evaluate these derivatives. The 3 × 3
Sobel operators (Figure 3.9c) also evaluate the partial deriv-
atives in the x and y directions but they give more weight to
the central points.

The Laplacian of a function s is given by:

(3.10)

The value of the Laplacian is directly proportional to the
average of the curvatures of function s in the directions x and
y; this operator also is quite sensitive to noise. The 3 × 3
Laplacian operator is shown in Figure 3.10, and Figure 3.11
illustrates an interferogram processed with some of these
operators.

3.4.3 Spatial Filtering by Convolution Masks

A filtering mask represents the filtering function h(x,y) with
a matrix of N × N pixels. As we have seen before in Chapter
2, a function may be filtered by convolving the function with
a filter function. The Fourier transform of the filter function

Figure 3.9 Masks for evaluating derivatives: (a) Robert’s operator,
(b) Prewitt operator, and (c) Sobel operator.
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is referred to as the frequency response function of the filter.
The filtering function with a mask with N × N pixels may be
written as:

(3.11)

where M = (N – 1)/2. The Fourier transform (or frequency
response) of this filter is:

(3.12)

where α is the separation between two consecutive pixels;
hence, we may write the sampling frequency as fS = 1/α.

Figure 3.10 Laplacian operator.

(a) (b) (c) (d)

Figure 3.11 An interferogram processed by various operators: (a)
original interferogram, (b) processed with a horizontal Sobel operator,
(c) result after four passes with horizontal Sobel operator, and (d)
after processing with the Laplacian.
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The kernel or mask may be of any size N × N. The larger
the size, the greater the control over the functional form of
the filter. This size must be decided based on the spatial
frequencies in the image to be filtered, but a small 3 × 3 size
is the most common. The mask may be asymmetrical or sym-
metrical. A symmetrical mask has a real Fourier transform
and is thus referred to as a zero phase mask. In this case, we
have h–11 = h–1–1 = h1–1 = h11, h–10 = h10, and h0–1 = h01. Thus,
in this particular case, we may write:

(3.13)

As pointed out before, when sampling a digital image it is
assumed that it is band limited and that the conditions of the
sampling theorem are not violated; hence, the maximum val-
ues that fx and fy may have are equal to half the sampling
frequency. This filter function along the x-axis is:

(3.14)

The coefficients hnm are frequently normalized so the filter
frequency response at zero frequencies, H(0,0), is equal to 1
in order to preserve the DC level of the image. In this case,
we have:

(3.15)

that is, the sum of all elements in the kernel should be equal
to one. In some other kernels (for example, in the Laplacian),
this sum of coefficients is made equal to zero to eliminate the
DC level of the image. Examples of some common filtering
masks are illustrated in Figure 3.12, and the frequency
responses for some of these filters are shown in Figure 3.13.
The frequency responses are plotted only up to the highest
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frequency in the image, which is half the sampling frequency.
For some of these filters, the response at some frequencies
may become negative, so the contrast is reversed for these
frequency components.

The main application of the low-pass filters is to reduce
the noise level in an image. The low-pass kernel shown in
Figure 3.12a is quite effective in reducing Gaussian noise,
which affects the entire image randomly and seriously
degrades its quality. The frequency response of this filter is
shown in Figure 3.13a. We can see that the first zero of this

Figure 3.12 Some typical 3 × 3 kernels used to filter images.
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filter is at approximately 0.31 of the sampling frequency. In
other words, the period of the first zero is at 3.2 times the pixel
separation, which is approximately the full mask size (3 pixels).
A low-pass filter with its first zero at a lower spatial frequency
requires a larger mask; thus, a rule of thumb is that the period
of the first zero is about the mask size required.

Applying a low-pass filter reduces not only the noise but
also the high-frequency content of the image. Another common
consequence is that the image contrast is also reduced. The
filter may be applied to the image several times to reduce the
noise even more, but always at the expense of reducing the
image sharpness. This is not the only type of noise that can
affect an image, as shot or binary noise can affect isolated pixels
having maximum brightness. This noise does not in general
degrade the image definition, but it does produce the appear-
ance of speckles. In such cases, the low-pass filter reduces the
image definition without suppressing the binary noise. 

A much better filter for reducing binary noise is the so-
called median filter, which reduces binary noise without
reducing the image definition. In the median filter, the value

Figure 3.13 Frequency responses of some 3 × 3 kernels used to
filter images.
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to be inserted at the center of the kernel is not the average
value of the surrounding pixels; instead, the median value of
these pixels is taken. The median value is obtained by sorting
the surrounding pixels in order of decreasing or increasing
value, then the value of the pixel at the center is taken. If
the kernel side is odd, as in the 3 × 3 example just considered,
the number of pixels around the central one is even. In this
case, the median is the average of the two pixels in the middle,
after sorting. It is interesting to note that the median filter
performs very poorly with Gaussian noise. Figures 3.14 and
3.15 show images with Gaussian and binary noise, respec-
tively, and their filtered versions using these two noise filters.
A high-pass filter is shown in Figure 3.12b and its frequency
response in Figure 3.13b, and an example of filtering with
this filter is provided in Figure 3.16.

(a) (b) (c)

Figure 3.14 An image (a) with binary noise, (b) filtered with a
low-pass filter, and (c) filtered with a median filter.

(a) (b) (c)

Figure 3.15 An image (a) with Gaussian noise, (b) filtered with a
low-pass filter, and (c) filtered with a median filter.



3.4.4 Edge Detection

It is possible to detect fringe edges by means of a derivative,
as shown in Figure 3.17, where the location of the edge is
defined by the points with maximum slopes. At the maximum
slope locations, the second derivative is zero, as shown in the
same figure. We have seen in Chapter 2 that the derivative of
a function may be found by convolving it with a filtering func-
tion for which the Fourier transform is linear with the fre-
quency. This is possible only for a large mask; however, as we
have already seen, a good approximation may be obtained with
some 3 × 3 masks, in which case the edges can de detected by
calculating the partial derivatives in order to obtain the gra-
dient, defined by a vector with the following two components:

(a) (b)

Figure 3.16 (a) An image and (b) its filtered version using a high-
pass filter.

Figure 3.17 Edge detection with first and second derivatives.

EDGES EDGES

First derivative
Second derivative



(3.16)

The edges are located where the gradient has a maximum
value, with an orientation perpendicular to the gradient. The
Laplacian is not often used for edge detection due to its large
sensitivity to noise; however, it can be useful when determining
which side of the edge is the dark or clear zone. Figure 3.18
shows an example of edge detection.

3.4.5 Smoothing by Regularizing Filters

We have seen how we can use small convolution matrices to
filter images. In fringe analysis, we often need to apply a low-
pass filter to a fringe pattern that has a finite extension. This
finite extension may be due to the pupil of the optical instru-
ment under analysis. The main drawback of using low-pass
convolution filters is that at the edges of the fringe pattern
the fringe pattern is mixed with the illumination background.
In other words, cross talk occurs at the fringe boundary
between the background illumination and the fringe pattern
which causes problems for phase detection near the boundary.
The phase distortion at the edge introduced by a convolution
filter may be very important when testing, for example, a
large telescope mirror.

(a) (b)

Figure 3.18 (a) An image and (b) its filtered version using an edge-
detection filter.
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A filtering method that alleviates this cross-talk problem
uses the so-called regularized filters (Marroquin, 1993). These
filters are obtained as minimizers of quadratic cost functionals.
The basic principle behind those filters is to assume that neigh-
boring pixels of the filtered image must have similar values
while the processed value still resembles the raw image data;
that is, large changes among neighboring pixels are penalized.
A merit function (U) may be defined as:

(3.17)

where the field signal (si, j) is the image being filtered and 
is the filtered field signal. The mask field (mi, j) is equal to one
in the region of valid image data and zero otherwise. The first
term in the quadratic merit function defined by this expression
is fidelity to the observed term. The constants ηx and ηy penal-
ize large gray-level changes of the filtered field signals ( ) in
the i and j directions, respectively. We need to specify a mask
field (mi, j) over the image being filtered by setting on the valid
region a value mi, j = 1 and on the background a value mi, j =
0. This field mask, therefore, represents the region where we
want to filter the field si, j to obtain a filtered field ( ). The
filtered field, then, will be the one that minimizes the above
cost functional for each pixel. This field may be found by
deriving the cost functional (U) with reference to the filtered
field ( ) and making this derivative equal to zero; that is,

(3.18)
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This expression represents a linear set of simultaneous equa-
tions that must be solved for the  field. One simple iterative
method that can be used to solve Equation 3.18, thus mini-
mizing the merit function, utilizes gradient descent:

(3.19)

where τ is a damping parameter. Coding this equation into a
computer is very simple, but this is not a very efficient method.
We may instead use the conjugate gradient.

The Fourier method can also be used to analyze this kind
of filter. The Fourier method of analyzing these filters assumes
that the region of valid image data is very large; that is, the
indicating mask field (mi, j) is equal to one over the entire (i, j)
plane. With this in mind, Equation 3.18 may be rewritten as:

(3.20)

Taking the Fourier transform on both sides of Equation 3.20,
we may obtain the frequency response of the system as:

(3.21)

This transfer function represents a low-pass filter with band-
width controlled by the parameters constants ηx and ηy.

3.5 SOME USEFUL SPATIAL FILTERS

We will now describe some of the filters most commonly used
in interferogram analysis and their associated properties.

3.5.1 Square Window Filter

One common filter function is a square function, with width
x0 and defined by:
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(3.22)

The spectrum of this filter (Figure 3.19a) is the sinc function
(Figure 3.19b) given by:

(3.23)

The first zero of the spatial frequency is for the frequency f0

given by:

(3.24)

This filter is equivalent to averaging the irradiance over all
pixels in a window 1 pixel high by N pixels wide. This width
is selected so that the row of N pixels just covers the window
width (x0) defined by the desired low-pass cutting point (f0)
for the spatial frequency. In other words, the length of the
filtering window should be equal to the period of the signal
to be filtered out. The height of the first secondary (negative)
lobe is equal to 0.2172 times the height of the main lobe
(central peak); hence, the amplitude of this secondary maxi-
mum is 7.63 decibels (dB) below the central peak. We may
also use a window with a sinc profile, in which case the
spectrum would be a square function.

Figure 3.19 (a) One-dimensional square filter and (b) its spectrum.
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3.5.2 Hamming and Hanning Window Filters

The square filter just described is not the ideal because it
leaves some high frequencies unfiltered due to the secondary
maxima in the spectrum of the sinc function. A better filtering
function is the Hamming function, defined by:

(3.25)

This function and its spectrum are illustrated in Figure 3.20.
The Fourier transform of this filter is given by:

(3.26)

The first zero for the spatial frequency of this filter is:

(3.27)

The height of the first secondary lobe (negative) is equal to
0.0063 times the height of the main lobe, or 22 dB down,
which is a much lower value than for the square filter.

The Hanning filter is very similar to the Hamming filter
and is defined by:

Figure 3.20 (a) Hamming and Hanning filters and (b) their Fourier
transforms.
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(3.28)

This function and its spectrum are illustrated in Figure 3.20.
The Fourier transform of this filter is given by:

(3.29)

The difference between the Hamming and Hanning filters is
the relative height of the secondary lobes with respect to the
main lobe and the main lobe widths.

3.5.3 Cosinusoidal and Sinusoidal 
Window Filters

These are not low-pass but band-pass filters. The cosinusoidal
filter may be expressed as the product of a Hamming filter and
a cosinusoidal function (Figure 3.21):

(3.30)

The half-width of each band is the same as in the Hamming
filter, and their separation from the origin is equal to fR. The
disadvantage of this filter is that it has two symmetrical pass

Figure 3.21 (a) Cosinusoidal window filter and (b) its spectrum.

h (x) H (f )

(a) (b)

f0
fR fR

x0

h x
x

x
x

x
( ) . cos | |= +⎛

⎝⎜
⎞
⎠⎟

<0 5 1
2

20

0π
for

= 0 elsewhere

H f fx fx

fx

( ) . .

.

= ( ) + +( ) +

+ −( )

1 00 0 25

0 25

0 0

0

sinc sinc

sinc

π π π

π π

h x
x

x
f x

x
R( ) . . cos cos | |= +⎛

⎝⎜
⎞
⎠⎟ ( ) <

=

0 54 0 46
2

2
2

0
0

0π π for

elsewhere



bands; hence, one of the sidebands cannot be isolated. The
solution is to complement its use with a sinusoidal filter,
defined by:

(3.31)

This filter has a spectrum as shown in Figure 3.22, where we
can see that the two pass bands now have opposite signs. Any
of the sidebands may be isolated by using a combination of
both filters. The combination of these two filters is known as
a quadrature filter.

3.6 EXTRAPOLATION OF FRINGES 
OUTSIDE OF THE PUPIL

In order to avoid some errors in phase detection, as suggested
by Roddier and Roddier (1987), the Gerchberg (1974) method
may be used to extrapolate the fringes in interferograms with
a large tilt (spatial carrier) outside the pupil boundary. Let
us assume that the irradiance signal in the interferogram
with a large spatial carrier can be written as:

(3.32)

where p(x,y) is the domain on which the interferogram extends,
as follows:

Figure 3.22 Sinusoidal window filter and its spectrum.
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(3.33)

Now, we can define the continuum as the interferogram irra-
diance when there are no fringes which is equal to a(x,y). This
continuum may be measured by several different procedures,
as described by Roddier and Roddier (1987). If we divide the
irradiance by the continuum and subtract the pupil domain
function, we obtain:

(3.34)

If we use the complex fringe visibility, u(x,y), as defined in
Equation 3.4, we obtain:

(3.35)

The Fourier transform of function g(x,y), using the convolution
theorem in Equation 2.30, is:

(3.36)

Thus, if the interferogram has no pupil boundaries, this spec-
trum would be concentrated in two circles with radii equal to
the frequency cut-off of U(f) centered at f0 and –f0. Due to the
circular boundary of the pupil, these circles increase in size
as the pupil size decreases. Extrapolation of the fringes is
easily achieved if the size of these two spots is reduced by
cutting them around and then taking the inverse Fourier
transform. This cut, however, distorts the fringes a little. The
original fringe pattern inside the pupil area is recovered by
inserting it back into the extrapolated fringe pattern. This
process is repeated iteratively several times. This algorithm
to extrapolate the fringes outside of the boundary of the pupil
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is illustrated in Figure 3.23, and Figure 3.24 provides an
example of fringe extrapolation using this method. If the
interferogram has no noise and the interferogram boundary
is well defined, this algorithm works quite well, producing
clean and continuous fringes. An improved version of this
algorithm for use when some noise is present was proposed
by Kani and Dainty (1988). 

3.7 LIGHT DETECTORS USED 
TO DIGITIZE IMAGES

Modern instrumentation to digitize images is of many differ-
ent types and is rapidly evolving and changing, and a descrip-
tion of these instruments is bound to be obsolete in a relatively
short time; nevertheless, a brief overview may be useful for

Figure 3.23 Algorithm used to extrapolate the fringes in an
interferogram.

(a) (b) (c)

Figure 3.24 (a) Interferogram and its extrapolated interferogram
using Gerchberg method and filtering with a Gaussian filter; (b)
after 10 passes; (c) after 60 passes.
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people beginning to work in the field of interferogram analy-
sis. Microcomputer systems for the acquisition and processing
of interferogram video images can have many different con-
figurations, one of which was described by Oreb et al. (1982).

3.7.1 Image Detectors and Television Cameras

Image detectors vary, depending on several factors such as
wavelength, resolution, or price. For example, Stahl and
Koliopoulos (1987) reported the use of pyroelectric vidicons to
detect interferograms produced with infrared light. Pretty-
johns (1984) described the use of charge-coupled device (CCD)
arrays. A television camera is one of the most commonly used
image detectors for digitizing interferograms (Hariharan,
1985). The most important characteristic of such an applica-
tion is the resolving power.

The typical image detector is a charge-coupled device,
illustrated in Figure 3.25 and described extensively in the
scientific literature (e.g., Tredwell, 1995). Among the many
different television systems are the National Television Sys-
tems Committee (NTSC) and the Electronics Industries Asso-
ciation (EIA) systems, which are used in the United States,
Canada, Mexico, and Japan. The phase alternating line (PAL)
system is used in Germany, the United Kingdom, and parts
of Europe, South America, Asia, and Africa. The Sequential
Couleur à Mémoire (SECAM) system is used in France, East-
ern Europe, and Russia. Table 3.2 shows the typical image
resolutions for these three systems.

The image is formed by a series of horizontal lines. A
complete scan of an image is called a frame. Frequently, to
avoid flickering, the odd-numbered lines are scanned first and

Figure 3.25 Television charge-coupled devices (CCDs).



then the even-numbered lines, in an alternating manner (Fig-
ure 3.26). The set of all odd-numbered lines is the odd field,
and the set of all even-numbered lines is the even field. This
manner of scanning is referred to as interlaced scanning. The
total number of lines per frame is 525 in the NTSC system.
In interlaced scanning, each of the two alternating fields has
263.5 lines.

Not all lines in the frame contribute to the image. Approx-
imately 41 lines are blanked out because they are either
retraced lines or are at the extreme top or bottom of the frame.
Subtracting these lines from the total number in the entire
frame, we are left with about 484 visible lines. The aspect ratio
of a standard television image is 4:3 (1.33:1); however, broad-
cast television images have an aspect ratio of 1.56:1, which is
based on an unofficial standard for professional digital televi-
sion equipment (Figure 3.27).

The main characteristics of the two main television sys-
tems, NTSC and PAL, are provided in Table 3.3. The vertical
resolution depends on the number of scanning lines, and a line
covers a row of pixels on the CCD, as illustrated in Figure
3.28; hence, a CCD array must have 485 pixels or more in the

TABLE 3.2 Image Resolution in Vertical Lines for the Main 
Television Systems

System

Resolution NTSC EIA PAL SECAM

Vertical 340 340 400 400
Horizontal 330 360 390 470

Figure 3.26 Interlaced lines in a television frame.
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vertical direction. The maximum vertical resolution, then, is
486 television lines. The signals from each row (image line) in
the CCD detector are transformed into an analog signal. The
horizontal detail (i.e., the number of image elements in the
horizontal line) is defined by the bandwidth of the television
signal, which is approximately 4.0 MHz, but it may vary, as
shown in Table 3.3. If the horizontal resolution is equal to the

Figure 3.27 Aspect ratios in a television frame: (a) standard
television image; and (b) broadcast television image.

TABLE 3.3 Characteristics of NTSC and PAL Systems

NTSC PAL

Field rate 60 Hz 50 Hz

Number of lines 525 625

Number of active lines 480 576

Time per line 63.49 μs 64 μs

Video bandwidth 4.5 MHz 5.5 MHz

Figure 3.28 Scanning the image from a CCD detector in a televi-
sion camera. Continuous odd-numbered lines show the first field,
while dotted even-numbered lines show the second field.
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vertical resolution, we say that the horizontal resolution is
equal to 484 television lines; however, because the aspect ratio
is equal to 4:3, the horizontal resolution is equivalent to having
(484 × 4)/3 = 645 lines. The horizontal resolution specified in
television lines is variable, depending on the number of pixels
on the CCD. The frequency bandwidth in the electronics of a
camera is constructed to fit the horizontal resolution of the
CCD detector; thus, the horizontal resolution may be higher
than the vertical resolution. Table 3.4 shows the resolution
characteristics for some commercial television cameras.

In color television cameras, dichroic red–green–blue
(RGB) color filters are built on each element of the CCD array.
Because each element contains only one of these colors, the
effective resolution in a color camera is lower than that of a
black-and-white camera. Some expensive cameras use three
CCD detectors to improve the image characteristics.

Television cameras for scientific applications may utilize
systems different from NTSC or any other commercial sys-
tems, and their resolution may generally be higher. Television
cameras are either analog or digital. Analog cameras work
in a manner similar to NTSC cameras, but they may have more
scanning lines and a larger bandwidth to increase their reso-
lution. Digital cameras, on the other hand, do not transform

TABLE 3.4 Characteristics of Some Commercial Television 
Cameras

Specifications Monochrome Color

Color
(High

Resolution)

Signal format EIA NTSC NTSC

Horizontal
resolution

570 television 
lines

330 television 
lines

470 television 
lines

Picture elements 768 H × 494 V 510 H × 492 V 768 H × 494 V

Sensing area
(Hmm × Vmm)

6.2 × 4.6 6.2 × 4.6 6.3 × 4.7

Interlaced Optional Yes Yes



the signals from each row in the CCD detector into analog
signals; instead, the signal from each element (pixel) in the
detector is directly read and transmitted to the receiver or
computer.

3.7.2 Frame Grabbers

When an analog camera is used to sample the image to be
digitized, an electronic circuit has to be used to convert the
analog signals from each line in the image into digital signals
for each pixel image. This analog-to-digital converter is
referred to as a frame grabber. Frame grabbers are usually
located inside the computer, although some models are exter-
nal modules that connect to a computer port. A typical frame
grabber has one or more of the following components (Figure
3.29).

The input multiplexer selects from several available
inputs, some with different specifications (RGB, composite
video, S-video), into a single input channel. The signal con-
ditioner adjusts the input signal to a level compatible with
the analog-to-digital converter. For monochrome frame grab-
bers, the chroma signal is removed to avoid having the

Figure 3.29 Block diagram of a typical frame grabber.
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chrominance signal treated as a luminance signal. In color
grabbers, three separate video signals are obtained for each
color to be digitized. The analog-to-digital converter is a key
component that determines the precision and resolution of
the entire grabber. All grabbers use the so-called flash con-
verter, the fastest digital-to-analog converter available and
the most expensive. Flash converters are available with
lower resolution (6 to 8 bits), compared to other kinds of
converters, as their most important characteristic is speed
of conversion.

Image memory is random-access memory used for storing
a digitized frame. Some frame grabbers have enough memory
to store several original frames as well as frames resulting
from processing other frames. Most of the memory used in
frame grabbers is double-port memory, which allows simulta-
neous reading and writing at different memory locations. The
data can be written while being displayed. Color and high-
resolution grabbers require a large amount of memory. Some
grabbers include a digital signal processor (DSP) to perform
dedicated high-speed calculations. In other cases, the grabber
is connected to an external array or a high-speed processor
board. A digital-to-analog converter translates the digital
image to an analog signal for display. The rate at which the
data are converted defines the output format. By selecting a
window from the original data and by adjusting the reading
rate, a grabber may be used for format conversion.

The least expensive grabbers usually work at standard
television rates. Some more expensive handle nonstandard
rates, including slow-scan, line-scan, high-resolution, or cus-
tom-defined formats.  Grabbers are available commercially
for several computer architectures, such as PC bus, EISA,
VMEbus, and microVAX, among others. The software to be
used determines the selection of a frame grabber, as does
hardware compatibility. Many grabbers are sold with bundled
software (e.g., drivers, demos), and a variety of image process-
ing software is widely available.
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4

Fringe Contouring and
Polynomial Fitting

4.1 FRINGE DETECTION USING 
MANUAL DIGITIZERS

If a large tilt is introduced in a Twyman–Green type interfer-
ometer of a perfectly flat wavefront interfering with a reference
flat wavefront, the fringes will look straight, parallel, and
equidistant. If the wavefront under analysis is not flat, the
fringes are curved, not straight. These fringes are called equal-
thickness fringes because they represent the locus of the points
with constant wavefront separation. The wavefront deforma-
tions may be easily estimated from a visual examination of
their deviation from straightness. If the maximum deviation
of a fringe from its ideal straight shape is Δx and the average
separation between the fringes is equal to s, then its wavefront
deviation (in wavelengths) from flat is equal to Δx/s.

This visual method gives us a precision that greatly
depends on the skills of the person making the measurements.
In the best case, we can probably approximate λ/20; norms have
been established for defining and classifying visually detected
errors (Boutellier and Zumbrunn, 1986). Even image quality
can be determined from manual measurements in an interfer-
ogram (Platt et al., 1978). Some measuring devices were pro-



posed to aid in this fringe measurement (Dyson, 1963; Dew,
1964; Zanoni, 1978), and this procedure is still used in many
manufacturing facilities, which use test plates as references.

The simplest interferometric quantitative analysis
method involves visually identifying and then tracking
fringes in an interferogram. In this method, a photograph of
the interferogram is taken and then a digitizing tablet is used
to enter into the computer the x,y coordinates of some selected
points on the interferogram located on the peak of the fringes.
In contrast, Kingslake (1926–1927) computed the primary
aberration coefficients by measuring a few points on the
fringe peaks in an interferogram.

Alternatively, to avoid the need for a photograph, the
image of an interferogram can be captured with a television
camera and displayed on a computer screen, where the peaks
of the fringes can be manually sampled (Augustyn et al., 1978;
Augustyn, 1979a,b). When the image is digitized with a tele-
vision camera, mechanical vibrations may introduce errors,
but some methods are available to reduce these errors (Cres-
centini and Fiocco, 1988; Crescentini, 1988).

For manual sampling, the fringes are assigned consecu-
tive numbers that increase by one from one fringe to the next.
This number is the interference order number (m). A tilt that
is large enough to eliminate closed fringes presents no prob-
lem. Every time a point on top of a fringe is selected, the x
and y coordinates are read by the graphic tablet or computer
and an order number (n) is assigned. This number is entered
by the computer operator each time a new fringe is beginning
to be measured. The wavefront deformation, W(x,y), at the
sampled points on top of the fringes is:

(4.1)

The value of n may differ from the real number m by a
constant quantity at all measurements, but this is not impor-
tant. It is more important to know in which direction the
number m must increase; otherwise, the sign of the wavefront
deformations will be undetermined. It is impossible to deter-
mine in which direction the fringe order number increases

W x y m( , ) = λ



from a single picture of the interference pattern, unless the
sign of any of the component aberrations is known. For exam-
ple, it would be sufficient if the sign of the tilt is known. This
sign has to be determined when adjusting the interferometer
to take the interferogram picture.

If some of the fringes form closed loops, the order number
assignment is a little more difficult but not impossible if care-
fully done (Figure 4.1). Many systems have been developed to
perform semiautomatic analyses of fixed interferograms of pic-
tures or in real time (Jones and Kadakia, 1968; Augustyn,
1979a,b; Moore, 1979; Womack et al., 1979; Cline et al., 1982;
Trolinger, 1985; Truax and Selberg, 1986/87; Truax, 1986;
Vrooman and Maas; 1989). Reviews on the problems associated
with the automatic analysis of fringes have been published by
several authors (e.g., Reid, 1986/87, 1988; Choudry, 1987).

4.2 FRINGE TRACKING AND 
FRINGE SKELETONIZING

The next stage in the automation process is detecting the
fringes, assigning order numbers by reading the interferogram
image with a two-dimensional light detector or television cam-
era, and computer analysis of the image. The objective here is
to locate the fringe maxima or minima by searching with algo-
rithms based on line tracking, threshold comparison, or adap-
tive binarization. Automatic location of the fringe maxima has
been available since the end of the 1970s (e.g., Hot and Durou,

(a) (b)

Figure 4.1 Sampling fringe positions at some points and assigning
order numbers in an interferogram: (a) open fringes, and (b) closed-
loop fringes.



1979). When the maxima have been located, a subsequent
fringe thinning or skeletonization is performed (Tichenor and
Madsen, 1978; Schluter, 1980; Becker et al., 1982; Yatagai et
al., 1982b; Nakadate et al., 1983; Robinson, 1983a,b; Becker
and Yung, 1985; Button et al., 1985; Osten et al., 1987; Eich-
horn and Osten, 1988; Gillies, 1988; Hunter et al., 1989a,b; Liu
and Yang, 1989; Matczak and Budzinski, 1990; Yan et al., 1992;
Huang, 1993; He et al., 1999). Skeletonizing is based on a
search of local irradiance peaks by segmentation algorithms
based on adaptive thresholds, gradient operators, piecewise
approximations, thinning procedures, or spatial frequency fil-
tering. The result is a skeleton of the interferogram formed by
lines one pixel wide.

Servin et al. (1990) described a technique they refer to as
rubber band to find the shape of a fringe. The method is based
on a set of points linked together in a way similar to a rubber
band that attracts these points to a local maximum of the fringe.

Before sampling the fringes it is useful to add a tilt to the
interferogram. This tilt straightens the fringes and reduces
the fringe spacing, making it more uniform. Another benefit
of the tilt is that it makes fringe measurement and order
identification easier. Wide spacing between fringes increases
accuracy when locating the top of the fringe. On the other
hand, a large number of fringes increases the number of
fringes that must be sampled and hence the amount of mea-
sured information, so it is desirable to determine an optimum
intermediate tilt. For the case of digital sampling, Macy (1983)
and Hatsuzawa (1985) used a two-dimensional light detector
array to determine that the optimum fringe spacing is that
which produces a fringe separation of about four pixels.

The fringe analysis procedure can be summarized as
follows (Reid, 1986/87, 1988):

1. Spatial filtering of the image
2. Identification of fringe maxima
3. Assignment of order number to fringes
4. Interpolation of results between fringes.

The next few sections examine these steps in some detail.



4.2.1 Spatial Filtering of the Image

Spatial filtering is used to reduce the noise. This noise reduc-
tion can be performed in several different ways (Varman and
Wykes, 1982). If the spatial frequency of the noise is higher
than that of the fringes, low-pass filtering is appropriate.
When the spatial frequency of the noise is much lower than
that of the fringes (for example, due to an uneven illumina-
tion), high-pass filtering can improve the fringe contrast. A
more difficult situation arises when the spatial frequency of
the noise is similar to that of the fringes. Sometimes, the noise
is fixed to the aperture (for example, due to diffracting parti-
cles in the interferometer components); in this case, we can
take a second interferogram after moving the fringes and
changing the optical path difference (OPD) by λ/2, so the two
interferograms are complementary (i.e., a dark fringe in one
pattern corresponds to a clear fringe in the other) (Kreis and
Kreitlow, 1983). If we subtract one fringe pattern from the
other, the fixed noise will be greatly reduced.

4.2.2 Identification of Fringe Maxima

Skeletonizing techniques detect the fringe peaks on the entire
area of the digitized interferogram. Many different methods
may be used to detect the fringe peaks. Schemm and Vest
(1983) reduced the noise and located the fringe peaks using
nonlinear regression analysis with a least-squares fit of the
irradiance measurements in a small region to a sinusoid func-
tion. Snyder (1980) plotted the fringe profiles in a direction
perpendicular to the fringes by first smoothing and reducing
the data using an adaptive digital filter that located the sym-
metry points of the fringe pattern. Yi et al. (2002) used a least-
squares fitting to find the maxima of the fringes. Mastin and
Ghiglia (1985) skeletonized fringe patterns by using the fast
Fourier transform and then locating the dominant spatial
frequency in the vicinity of each fringe and also by using a
set of logical transformations in the neighborhood of a fringe
peak. Zero crossing algorithms have also been used (Gasvik,
1989).



These peaks can also be detected using a matrix of 5 × 5
pixels (Figure 4.2), as proposed by Yatagai et al. (1982b). Assume
that the matrix in Figure 4.2a is centered on top of a vertical
fringe. Then, the average values of the irradiance in the shaded
pixels in Figure 4.2b will be smaller than the average values
of the irradiance in the pixels with dots. The same principle
can be applied to horizontal fringes and inclined fringes (Figure
4.2c). Thus, the conditions for detecting a fringe maxima are:

(4.2)
and

(4.3)

in the x direction;

(4.4)
and

(4.5)

in the y direction;

Figure 4.2 Yatagai matrix to find fringe maxima (see text).

P−1 1 P0 1 P1 1

P−1 0 P0 0 P1 0

P−1−1 P0−1 P1−1

P−1−2 P0−2 P1−2

P−1 2 P0 2 P1 2

P−2 0

P−2−2

P−2−1

P−2 1

P−2 2

P2 0

P2−2

P2−1

P2 1

P2 2

x

xyy

(b)(a)

(c)

P P P P P P00 0 1 01 21 20 2 1+ + = + +− − − −–

P P P P P P00 0 1 0 1 21 20 2 1+ + = + + −–

P P P P P P00 10 10 1 2 0 2 1 2+ + = + +− − − − −

P P P P P P00 10 10 12 02 12+ + = + +− −



(4.6)
and

(4.7)

in the x,y direction;

(4.8)
and

(4.9)

in the –x,y direction.
When at least two of these conditions are satisfied, the

point is assumed to be on top of a fringe. Figure 4.3 shows an
example of fringe skeletonizing using this method. Yu et al.
(1994) showed that, if the interferogram illumination has a
strong modulation (for example, if a large-aperture Gaussian
beam is used), the central peak of the fringes shifts laterally
a small amount. This shift is greater where a larger slope of
the interferogram illumination exists. The extracted skeletons
may contain many disconnections, so the next step is to localize
these and make some corrections. Many sophisticated methods
have been devised to perform this operation (Becker et al.,
1982). For simple interferograms with low noise and good con-
trast, the matrix operators described in Chapter 3 can be used.

4.2.3 Assignment of Order Number to Fringes

The assignment of order numbers to the fringes is an extremely
important step. A mistake in just one of the fringes can lead
to significant errors when calculating the wavefront deforma-
tion. This step can be made quite simple if a large amount of
tilt is introduced to eliminate closed fringes (Hovanesian and
Hung, 1990). In this case, the order number increases mono-
tonically from one fringe to the next. Sometimes, however,
when such a large tilt is not possible or practical, we can use
two interferograms taken with different colors or with slightly
different optical path differences (Livnat et al., 1980). Such an
approach is equivalent to methods used in optical shops where

P P P P P P00 1 1 11 22 21 1 2+ + = + +− − − −–

P P P P P P00 1 1 11 2 2 2 1 1 2+ + = + +− − − −–

P P P P P P00 11 1 1 22 21 12+ + = + +− −

P P P P P P00 11 1 1 2 2 2 1 1 2+ + = + +− − − − − − − −



test plates are used to determine if a surface is concave or
convex with respect to the test plate (Mantravadi et al., 1992).
Hovanesian and Hung (1990) studied three similar methods to
identify the fringe order number. 

Trolinger (1985) discussed the problems of a completely
automatic fringe analysis, and frequently, when an automatic
method is difficult, the order number must still be determined
by visual observation of the fringes, in which case interactive
procedures are convenient. These semiautomatic algorithms
allow the operator to interact with the computer during the
interferogram processing. Yatagai et al. (1982b) reported an
interactive system for analyzing interferograms in which oper-
ators used a light pen to indicate their decisions. Funnell (1981)
developed an interactive system in which the operator helped

Figure 4.3 Skeletonizing and thinning of interferometric fringes:
(a) original interferogram, (b) result after detecting peaks in one
direction, (c) result after detecting peaks in two orthogonal directions,
and (d) thinned skeletons with noise outside of pupil being removed.
(Adapted from Yatagai, T., in Interferogram Analysis, Digital Fringe
Pattern Measurement Techniques, Robinson, D.W. and Reid, G.T., Eds.,
Institute of Physics, Philadelphia, PA, 1993.)



the machine with fringe identification by using keyboard com-
mands. Still another interactive system was reported by Yata-
gai et al. (1984) to test the flatness of very large integrated
circuit wafers. Finally, Parthiban and Sirohi (1989) constructed
an interactive system in which the operator helped the machine
identify fringe order numbers using a gray-scale coding with
different colors for the fringes. The problem of fringe number
identification may be simplified if some a priori information is
known (Robinson, 1983a). A clear example is when we know
in advance that the fringes are circular.

4.3 GLOBAL POLYNOMIAL INTERPOLATION

When the values of the wavefront deformations have been
determined for many points over the interferogram, an inter-
polation between the points must be made in order to estimate
the complete wavefront shape. This interpolation is accom-
plished by the use of a two-dimensional function. This is a
global interpolation, because a single analytical function is
used to represent the wavefront for the entire interferogram.
To perform a global interpolation, the polynomials used most
frequently are the Zernike polynomials (Malacara et al., 1976,
1987, 1990; Loomis, 1978; Plight, 1980; Swantner and Lowrey,
1980; Wang and Silva, 1980; Mahajan, 1981, 1984; Kim, 1982;
Malacara, 1983; Hariharan et al., 1984; Kim and Shannon,
1987; Prata and Rusch, 1989; Malacara and DeVore, 1992).

Because the pupil of optical systems is frequently circu-
lar, it seems logical to express this two-dimensional function
in polar coordinates, as follows:

(4.10)

and
(4.11)

where angle θ is measured with respect to the y-axis (Figure
4.4).

The wavefront deformations can be represented by many
types of two-dimensional analytical functions, but the most
commonly used are the Zernike polynomials. When the fit is

x = ρ θsin

y = ρ θcos



not perfect, we define the fit variance, , as the difference
between the actual sampled wavefront, W′, and the analytical
wavefront, W(ρ,θ), as follows:

(4.12)

The normalizing factor in front of the integral is 1/π. If the
fit variance is zero, the analytic function is an exact repre-
sentation of the wavefront.

Sometimes it is also important to specify the mean wave-
front deformation (Wav) including the normalizing factor,
which is defined by:

(4.13)

Wavefront deformations are nearly always measured with
respect to a close spherical reference. This spherical reference
is defined by the position of the center of curvature and the
radius of curvature.

The average wavefront deviations with respect to the
spherical reference is the variance ( ), defined as:

(4.14)

Figure 4.4 Polar coordinates used for two-dimensional polynomials.
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which is frequently referred to as the root mean square (rms)
value of the wavefront deformations. The reference spherical
wavefront may be defined with any value of the radius of
curvature (piston term) without modifying the position of the
center of curvature. Nevertheless, the value of the wavefront
variance may be affected by this selection, because the aver-
age wavefront is also affected. A convenient way to eliminate
this problem is to select the reference sphere, when defining
the wavefront variance, as the one with the same position as
the mean wavefront deformation. This is why we subtract Wav

in this expression.

4.3.1 Zernike Polynomials

The Zernike polynomials have unique and desirable proper-
ties that are derived from their orthogonality. These polyno-
mials have been described in many places in the literature
(e.g., Zernike, 1934, 1954; Bathia and Wolf, 1952, 1954; Born
and Wolf, 1964; Barakat, 1980; Malacara and DeVore, 1992;
Wyant and Creath, 1992), and a brief review is made here.
The Zernike polynomials, U(ρ,θ), written in polar coordinates,
are orthogonal in the unit circle in a continuous fashion (exit
pupil with radius one) with the condition:

(4.15)

where ρ = S/Smax is the normalized radial coordinate, with S
being the non-normalized radial coordinate. The Kronecker
delta (δnn′) is zero if n is different from n′. The Zernike poly-
nomials are represented with two indices (n and l) because
they are dependent on two coordinates. Index n is the degree
of the radial polynomial, and l is the angular dependence
index. The numbers n and l are both even or both odd, making
n – l always even. There are (1/2)(n + 1)(n + 2) linearly

independent polynomials of degree ≤n, one for each
pair of numbers n and l.
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The polynomials can be separated into two functions, one
depending only on radius ρ and the other depending only on
angle θ, thus obtaining:

(4.16)

where the sine function is used when n – 2m > 0 (antisymmetric
functions), and the cosine function is used when n – 2m ≤ 0
(symmetric functions). The degree of the radial polynomial

is n and 0 ≤ m ≤ n. It can be shown that |l| is the
minimum exponent of the polynomials . The radial poly-
nomial is given by:

(4.17)

All Zernike polynomials, Un(ρ), may be ordered with a single
index, r, defined by:

(4.18)

Table 4.1 shows the first 15 Zernike polynomials. Kim and
Shannon (1987) developed isometric plots for the first 37
Zernike polynomials, some of which are shown in Figure 4.5.

Triangular and ashtray astigmatisms may be visualized
as the shape that a flexible disc adopts when supported on
top of three or four points equally distributed around the edge.
It should be pointed out that these polynomials are orthogonal
only if the pupil is circular, without any central obscurations.

Any continuous wavefront shape, W(x,y), may be repre-
sented by a linear combination of the Zernike polynomials:
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(4.19)

If the maximum power is L, coefficients Ar can be found by
any of several possible procedures — for example, by requiring
that the fit variance defined is minimized.

TABLE 4.1 First Fifteen Zernike Polynomials

n m r
Zernike

Polynomial Meaning

0 0 1 1 Piston term

1 0 2 ρ sinθ Tilt about x-axis

1 1 3 ρ cosθ Tilt about y-axis

2 0 4 ρ2 sin(2θ) Astigmatism with axis at ±45°

2 1 5 2ρ2 – 1 Defocusing

2 2 6 ρ2 cos(2θ) Astigmatism, axis at 0° or 90°

3 0 7 ρ3 sin(3θ) Triangular astigmatism, base 
on x-axis

3 1 8 (3ρ3 – 2ρ) sinθ Primary coma along x-axis

3 2 9 (3ρ3 – 2ρ) cosθ Primary coma along y-axis

3 3 10 ρ3 cos(3θ) Triangular astigmatism, base 
on y-axis

4 0 11 ρ4 sin(4θ) Ashtray astigmatism, nodes 
on axes

4 1 12 (4ρ4 – 3ρ2) sin(2θ)
4 2 13 64ρ4 – 6ρ2 + 1 Primary spherical aberration

4 3 14 (4ρ4 – 3ρ2) cos(2θ)
4 4 15 ρ4 cos(4θ) Ashtray astigmatism, crests 

on axis
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4.3.2 Properties of Zernike Polynomials

The advantage of expressing the wavefront by a linear com-
bination of orthogonal polynomials is that the wavefront devi-
ation represented by each term is a best fit (minimum-fit
variance) with respect to the actual wavefront. Any combina-
tion of these terms must also be a best fit. Each Zernike
polynomial is obtained by adding to each type of aberration
the proper amount of piston, tilt, and defocusing so that the
rms value ( ), for each Zernike polynomial is minimized. To
illustrate this with an example, let us consider a spherical
aberration polynomial, where we see that a term + 1 (piston
term) and a term – 6ρ2 (defocusing) have been added to the
spherical aberration term, 6ρ4. These additional terms mini-
mize the rms deviation of spherical aberration with respect
to a flat wavefront. The practical consequence of the orthog-
onality of the Zernike polynomials is that any aberration
terms, such as defocusing or tilt, may be added or subtracted
from the wavefront function, W(x,y), without losing the best
fit to the data points.

Using the orthogonality condition, the mean wavefront
deformation for each Zernike polynomial may be shown to be:

Figure 4.5 Isometric plots for some Zernike polynomials.

(a) Piston term (b) Tilt

(c) Defocusing (d) Astigmatism

(e) Coma (f) Spherical aberration
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(4.20)

This means that the mean wavefront deformation is zero for
all Zernike polynomials, with the exception of the piston term;
thus, the wavefront variance, is given by:

(4.21)

where n is related to r by:

(4.22)

4.3.3 Least-Squares Fit to Zernike Polynomials

The analytic wavefront in terms of Zernike polynomials may
be obtained using a two-dimensional least-squares fit (Mal-
acara et al., 1990; Malacara and DeVore, 1992). If we have N
measured points with coordinates (ρn,θn) and values , mea-
sured with respect to a close analytical function, W(ρ,θ), then
the discrete variance (ν2) is defined by:

(4.23)

The best least-squares fit to the function W(ρ,θ) is defined when
the analytical function is chosen so this variance is a minimum
with respect to the parameters of this function. We can see that
the discrete variance S2 and variance  are the same if the
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number of points is infinite, and they are uniformly distributed
on the sampling region (aperture of the interferogram).

Let us now consider the analytical function W(ρ,θ) when
it is a linear combination of some predefined polynomials,
V(ρ,θ):

(4.24)

In order to have the best fit, we require that

(4.25)

where p = 1, 2, 3, …, L. We then obtain the following system
of L linear equations:

(4.26)

The matrix of this linear system of equations becomes diag-
onal if the polynomials Vr satisfy the condition that

(4.27)

This expression means that the polynomials Vr are
orthogonal on the discrete base of the measured data points,
as opposed to the Zernike polynomials, which are orthogonal
in a continuous manner; that is, they are not orthogonal in
the unitary circle, as the Zernike polynomials are. 

The solution to the system of equations then becomes:

(4.28)
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The polynomials Vp are not the Zernike polynomials Up, but
they approach them when the number of sampling points is
extremely large and they are uniformly distributed on the
unitary circle. The most important and useful property of
orthogonal polynomials, as was pointed out earlier, is that
when a least-squares fit is made any polynomial in the linear
combination can be taken out without losing the best fit.
Hence, it is more convenient to use Vp instead of Up to make
the wavefront representation. If desired, these polynomials
can later be transformed into Zernike polynomials. A small
problem, however, is that, because the locations of sampling
points are different for different interferograms, the polyno-
mials Vp are not universally defined, so they must be found
for every particular case by a process referred to as Gram–
Schmidt orthogonalization.

4.3.4 Gram–Schmidt Orthogonalization

The desired polynomials, orthogonal in the datapoint base,
can be found as a linear combination of the Zernike polyno-
mials:

(4.29)

where r = 1, 2, 3, …, L. Now, using the orthogonality property
and summing for all data points, we obtain for all values of
r different from p:

(4.30)

Thus, Drp can be written as:
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(4.31)

where r = 2, 3, 4, …, L, and p = 1, 2, …, r – 1. These coefficients
give us the desired orthogonal polynomials. Factors affecting
the accuracy of global interpolation using Zernike polynomials
were studied by Wang and Ling (1989).

4.4 LOCAL INTERPOLATION BY SEGMENTS

A set of data points may be fitted to a polynomial, as we have
seen in last section. This approach, however, has some prob-
lems, perhaps the most important being that, when the num-
ber of sampling points is large, the fit tends to have many
oscillations and to deviate strongly at the edges, as illustrated
in Figure 4.6. Global and local fitting of interferograms has
been studied and compared by several researchers (e.g., Rob-
lin and Prévost, 1978; Hayslett and Swantner, 1978, 1980;
Freniere et al., 1979, 1981).

Local interpolation can be performed by several possible
methods. The simplest one is Newton trapezoidal interpola-
tion, but frequently better approximations are necessary. The
three procedures most commonly used, then, are (Mieth and
Osten, 1990):

1. One-dimensional spline interpolation
2. Two-dimensional bilinear interpolation
3. Triangular interpolation

A spline is a mechanical device, made of flexible material,
that is used by draftsmen to draw curves. In mathematics,
however, a spline is also an extension-limited piece of curve
that may be used to represent a small interval in the set of
points to be interpolated. The theory of splines has been treated
in several books (e.g., Lancaster and Salkauskas, 1986). This
method has the great advantage of providing greater control
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over the quality of the interpolation, as we proceed segment
by segment to construct an entire curve. The problem, however,
is that no single analytical representation exists for the entire
curve. The points to be joined by splines are called knots. When
the knots are connected with a straight line, the spline is linear.
Additionally, at two consecutive knots joined by a spline, we
must satisfy at least one of the two following conditions:

1. To have the same slope (first derivative) at the com-
mon knot. This condition can be satisfied with a third-
degree polynomial, and the spline is cubic.

2. To have the same curvature (second derivative) at
the common knot; under certain conditions, this cri-
terion can also be satisfied with a cubic spline.

Figure 4.6 Errors in curve fitting for several polynomial degrees.
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In interferometric data fitting, the cubic spline is a most
popular and useful tool. To construct a cubic spline, the first
derivative (slope) at the knots must be continuous; however,
we have two possible ways to construct this spline:

1. The slope at the knots is calculated first, and the
choice of these slopes is critical to the final result.
One possible approach is to choose the slope of the
second-degree curve (parabola) that passes through
the point being considered and the two points on each
side. The slopes at the extremes are those of the
straight lines joining the first two and the last two
points. When the slopes at all the knots are defined,
the cubic spline may be calculated.

2. Another possibility is not to define the slope values
at each knot; it is only required that they be contin-
uous. We use this extra degree of freedom to require
that the curvatures (second derivatives) are also con-
tinuous at the knots. In this case, we have a classic
cubic spline. We only have to define the slopes or the
curvatures at the first knot and at the last knot. If
we define these curvatures as zero, we have a natural
cubic spline. Figure 4.7 shows an example of a spline
fitting.

Press et al. (1988) provided an algorithm in C to calculate
the classic spline and the algebraic expressions to calculate
the splines for interpolation of an array of points (yi,xi) with
x1 < x2 < … < xN.

In addition to the point coordinates we must also supply
the program with the values of the slopes at the beginning
and at the end of the array. This procedure begins with

Figure 4.7 An example of spline fitting.



solving a system of N linear equations with N unknowns. The
first N – 2 equations are:

(4.32)

where the unknowns (y′′) are second derivatives at each of the
knots. Two other equations necessary to solve this system are:

(4.33)

if the natural cubic spline is desired. Alternatively, we may
set both of the first derivatives at the beginning and the end
of the array of points to the desired values and use the fol-
lowing two equations:

(4.34)

with

(4.35)

and

(4.36)

with

(4.37)

In two dimensions, a similar approach can be used with bicu-
bic splines.
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4.5 WAVEFRONT REPRESENTATION 
BY AN ARRAY OF GAUSSIANS

Frequently, the description of a wavefront shape can be inac-
curate when using a polynomial representation if sharp local
deformations are present. The most important errors in the
analytical representation occur at these sharp deformations
and near the edge of the pupil. An analytical representation
by means of a two-dimensional array of Gaussians may be
more accurate, as described by Montoya-Hernández et al.
(1999). Let us consider a two-dimensional array of (2M + 1) ×
(2N + 1) Gaussians with separation d (Figure 4.8). The height
(wnm) of each Gaussian in the array is adjusted to obtain the
desired wavefront shape, W(x,y), with the expression:

(4.38)

The spatial frequency content of this wavefront is represented
by the Fourier transform F{W(x,y)} of the function W(x,y) as
follows:

(4.39)

Figure 4.8 Sampling a wavefront with a two-dimensional array
of Gaussians.
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Two important parameters to be determined are the separa-
tion (d) and width (ρ) of the Gaussians. To determine these
quantities, let us consider a one-dimensional function, g(x),
which is sampled by a comb function, h(x), as shown in Figure
7.9a. We assume that function g(x) is band limited, with a
maximum spatial frequency (fmax). To satisfy the sampling
theorem, the comb sampling frequency should be smaller than
half of fmax. Function g(x) can then be reconstructed.

From the convolution theorem we know that the Fourier
transform of the product of two functions is equal to the
convolution of the Fourier transforms of the two functions:

(4.40)

We can see in Figure 4.9b that in the Fourier or frequency
space an array of lobes represents the Fourier transforms of
the sampled function. If the sampling frequency is higher than
2fmax, the lobes are separated without any overlapping. Ideally,
they should just touch each other. The function g(x) is well
represented only if all lobes in the Fourier space are filtered
out with the exception of the central lobe. To perform the
necessary spatial filtering, the comb function is replaced by an
array of Gaussians, as shown in Figure 4.10a. In the Fourier

Figure 4.9 Sampling a two-dimensional function with a comb
function.
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space, the Fourier transform of these Gaussians appears as a
modulating envelope that filters out the undesired lobes (Fig-
ure 4.10b). To obtain good filtering, the Gaussians should have
a width (ρ) approximately equal to the array separation (d).

The remaining parameter to be determined is the Gaus-
sian height (wnm). This can be done using an iterative proce-
dure. To obtain the wavefront deformation at a given point, it
is not necessary to evaluate all the Gaussian heights, as the
contributions of the Gaussians decay very quickly with their
distance from that point. The height of each Gaussian is
adjusted until the function g(x) has the desired value at that
point. A few iterations are sufficient to obtain a good fitting.
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5

Periodic Signal Phase Detection
and Algorithm Analysis

5.1 LEAST-SQUARES PHASE DETECTION 
OF A SINUSOIDAL SIGNAL

An important problem to solve is detection (or measurement)
by means of a sampling procedure of the real phase of a real
sinusoidal signal for which the frequency is known. Let us
begin by studying the least-squares method. From Equation
1.4, the s(x) may be written in a very general manner as:

(5.1)

where x is the coordinate (spatial or temporal) at which the
irradiance is to be measured, ω is the angular spatial (or
temporal) frequency, and φ is the phase at the origin (x = 0).
If we want to make a least-squares fit of these irradiance
data to a sinusoidal function, as in Equation 5.1 (see Figure
5.1), we must determine four unknown constants: a, b, φ, and
ω; however, the analysis is simpler if we assume that the
frequency of sinusoidal function ω is known, as is normally
the case.

s x a b x( ) cos( )= + +ω φ



For least-squares analysis following Greivenkamp (1984),
it is better to write this expression in an equivalent manner,
as follows:

(5.2)
where:

(5.3)

Now, the following N measurements of the signal are taken:

(5.4)

where N ≥ 3, as three constants are to be determined. The best
fit of these measurements to the sinusoidal analytical function
is obtained if the coefficients D1, D2, and D3 are chosen so that
variance ε, defined by:

(5.5)

is minimized. Thus, taking the partial derivatives of variance
ε with respect to the three unknown constants (D1, D2, and
D3), we find a set of simultaneous equations, which in matrix
form may be written as:

Figure 5.1 Unknown variables when sampling a sinusoidal func-
tion. The frequency ω is assumed to be known.
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(5.6)

This matrix is evaluated with the values of the phases at which
the signal is measured, but it does not depend on the values
of the signal. Thus, if necessary, the signal may be measured
as many times as desired, without having to calculate the
matrix elements every time; it is only necessary to use the
same phase values. This is the case for phase-shifting inter-
ferometry, for example, as is discussed in Chapter 6. As shown
by Greivenkamp (1984), this is a general least-squares proce-
dure for any separation between the measurements, assuming
only that frequency ω is known. The system expressed by
Equation 5.6 can also be written as:

(5.7)

Then, from Equation 5.3, the phase can be found by:

(5.8)
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where:

(5.9)

A particular least-squares sampling procedure was ana-
lyzed by Morgan (1982), who assumed that the measurements
were taken at equally spaced intervals, uniformly spaced in
k signal periods and defined by:

(5.10)

where x1 is the location of the first sampling point and n = 1,
2, …, kN. In the most frequent case, the sampling points are
distributed in only one signal period (k = 1). To understand
this angular distribution, we can plot these sampling points
with unit vectors from the origin, each vector having an angle
2π(n – 1)/N with respect to the x-axis (Figure 5.2). Then, we
can see that the sampling distribution for N ≥ 3 requires that
the vector sum of all the vectors from the origin to each point
is equal to zero. This condition is expressed by:

(5.11)

This condition is necessary but not sufficient to guarantee the
equally spaced and uniform distribution in Equation 5.10. As
shown in the lower row in Figure 5.2, we also need the fol-
lowing conditions for twice the phase angle:

(5.12)
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From the first expression in Equation 5.12 we can see that

(5.13)

and, from the second expression and a well-known trigono-
metric relation, we find:

(5.14)

With these relations, the system matrix becomes diagonal:

(5.15)

Figure 5.2 Polar representation of the sampling points, uniformly
spaced in a signal period: (a) three points, (b) four points, (c) five
points, and (d) six points. The upper row plots the phase for Equation
5.11, and the lower row plots twice the phase angle for Equation
5.12.
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with the solutions:

(5.16)

(5.17)

and

(5.18)

Substituting Equations 5.17 and 5.18 into Equation 5.8, the
phase at the origin (φ) may be obtained from:

(5.19)

Because of its relevance, this algorithm deserves a name.
Many different names had been given to it in the past, such
as synchronous detection algorithm, but here we will call it
the diagonal least-squares algorithm. The minimum accept-
able number of sampling points is N = 3, in which case we
obtain the sampling spacing as given by Equation 5.10:

(5.20)

and, if ωx1 = 60°, then the phase φ becomes:

(5.21)

If the sampling points are not properly spaced, as required
by Equation 5.20, then the phase value obtained with Equa-
tion 5.19 or 5.21 will not be correct, as will be shown later.
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5.2 QUADRATURE PHASE DETECTION 
OF A SINUSOIDAL SIGNAL

Let us consider the sinusoidal signal, s(x), as in Equation 5.1,
now written as:

(5.22)

where f is the frequency of this signal. Let us now take the
Fourier transform, S(f), of this signal at a reference frequency
(fr):

(5.23)

to obtain:

(5.24)

If the reference frequency (fr) is equal to the frequency of the
signal (f = fr), then this function has the value:

(5.25)

Then, as pointed out in Chapter 2, the phase (φ) of the real
periodic signal in Equation 5.1, evaluated at the origin (x = 0),
is equal to the phase of its Fourier transform at the frequency
of the signal (f = fr). Thus, using Equation 5.23, we obtain:

(5.26)
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To gain some insight into the nature of these integrals,
we can multiply the signal with frequency f by sine and cosine
functions with frequency fr:

(5.27)

and

(5.28)

where ω = 2πf and ωr = 2πfr. The functions zS(x) and zC(x) are
periodical, but they contain three harmonic components: (1)
the first term, with a very low frequency, equal to the differ-
ence between the signal and the reference frequencies; (2) the
second term, with the reference frequency; and (3) the last
term, with a frequency equal to the sum of the signal and the
reference frequencies. The spectrum of these functions is illus-
trated in Figure 5.3.

If the terms with frequencies ωr and ω + ωr are properly
eliminated by a suitable low-pass filter that also preserves
the ratio of the amplitudes of the low frequency terms, then
we obtain the filtered versions of these functions:

Figure 5.3 Spectrum of functions resulting from the multiplica-
tion of the sinusoidal signal by two reference sinusoidal functions,
sine and cosine.

fr f + frf − fr

2fr

z x s x x

b
x x a x

b
x x

S r

r r r

( ) ( )sin

sin sin sin

=

= − − +( ) + ( ) + + +( )

ω

ω ω φ ω ω ω φ
2 2

z x s x x

b
x x a x

b
x x

C r

r r r

( ) ( )cos

cos cos cos

= ( )

= − +( ) + ( ) + + +( )

ω

ω ω φ ω ω ω φ
2 2



(5.29)

and

(5.30)

Thus, we obtain:

(5.31)

When the signal and the reference frequencies are equal,
functions 5.29 and 5.30 are constants. Figure 5.4 plots Equa-
tions 5.27 and 5.28 for this case, where, because the signal
is not phase modulated, the filtered functions  and 
become constants. The phase at the origin (φ) (x = 0) is calcu-
lated by:

(5.32)

Figure 5.4 Functions resulting from the multiplication of the
sinusoidal signal by two reference sinusoidal functions, sine and
cosine, with the same frequency as the signal.
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The conditions necessary for this method to produce accu-
rate results and the effects of several possible sources of error
have been studied by Nakadate (1988a,b). The next section
discusses how the low-pass filtering must be performed in
order to obtain the phase at the origin (φ) or the phase at any
point x (ωx – ωrx + φ).

5.2.1 Low-Pass Filtering in Phase Detection

The simplest case for phase detection is when no detuning is
present — that is, when the signal frequency and the refer-
ence frequency are equal. In this case, when we evaluate the
integrals in Equation 5.26 we obtain the graphs in Figure 5.5.
The values of both integrals tend to infinity, although, the
ratio of the two integrals has a finite value equal to the ratio
of their average slopes.

This finite ratio of the integrals can be found in many
ways. For example, because the signal is periodical we can
perform the integration only in the finite interval –1/2f < x <
1/2f, or integer multiples of this value, as shown in Figure 5.6.

Figure 5.5 Plots of the values of the integrals in Equation 5.23
for a signal phase equal to 30° and signal constants a = 1.3 and b = 1.
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Two disadvantages of this method are that a large number of
sampling points is needed to emulate a continuous measure-
ment and that the signal frequency must be accurately deter-
mined in order to correctly fix the sampling interval.

Another method is a discrete sampling low-pass filtering
process that can be performed by means of a convolution, as
described in Chapter 2, with a pair of suitable filtering func-
tions: hS(x) and hC(x). Let us now consider this method but
remove the restriction for no detuning. The entire process of
multiplication by the sinusoidal reference and low-pass fil-
tering to obtain the filtered functions  and  is
expressed by:

(5.33)

and, in an analogous manner, with the filtering function hC(x)
we have:

Figure 5.6 Plot of the values of the ratio of the integrals in
Equation 5.26 for a signal phase equal to 30° and signal constants
a = 1.3 and b = 1.
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(5.34)

To use Equation 5.31 to obtain the correct value of the
phase (ωx – ωrx + φ) at any point x in the presence of detuning,
we need to satisfy three conditions:

1. The low-pass filtering must be performed using the
convolution operation, as expressed by Equations
5.33 and 5.34.

2. The terms with frequencies ωr and (ω + ωr) must be
completely eliminated so this function is zero for any
value of x.

3. The ratio of the amplitudes of the low-frequency
terms, with frequency (ω – ωr), must be preserved by
the filtering process.

In general, the filtering functions for zS(x) and zC(x) can be
different, although sometimes they are the same, as we will
see later. If the filtering function is the same for both func-
tions, the third condition is automatically satisfied, but not if
they are different.

Let us now consider the case when we are interested not
in the phase at any value of x but only in the phase at the
origin (φ). In this case, we need to satisfy slightly different
conditions. In order to obtain the correct phase using Equation
5.32, the contribution of the high-frequency components of

or  to the value of the filtered signals  or ,
respectively, must be zero. In other words, we do not require
that the high-frequency components are completely elimi-
nated, only that their value at x = 0 is zero. The conditions
to be satisfied in this case are:

1. The low-pass filtering must be complete only for the
point at the origin, using the convolution with x = 0.

2. The contributions to  and of the terms with
frequencies ωr and (ω + ωr), evaluated at the origin,
must be zero.

3. The ratio of the amplitudes of the low-frequency terms,
with frequency (ω – ωr), must be preserved by the
filtering process.

z x z h xC C C( ) ( ) ( )= −
−∞

∞

∫ α α αd

z xS ( ) z xC ( ) zS ( )0 zC ( )0
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To better understand the second condition, let us assume
that we need to avoid any effect on the phase in Equation
5.32 of a certain high-frequency component present in zS(x)
or zC(x) which is sinusoidal and real. The value of this sinu-
soidal component must be zero at the origin. The value at the
origin of this sinusoidal component is zero not only if its
amplitude is zero but also if it is antisymmetrical (a sine
function). Then, its Fourier transform at this frequency must
be imaginary and antisymmetrical, as shown in Table 2.3.

We have seen in Chapter 2 that the convolution of two
functions is equal to the inverse Fourier transform of the
product of the Fourier transforms of those two functions.
Hence, we may write:

(5.35)

and similarly for zC(x). Thus, the right-hand side of this
expression at the frequency to be filtered, as for the left-hand
side, must also be imaginary and antisymmetrical.

On the other hand, the sinusoidal component of zS(x) that
we want to filter out is real; thus, according to Table 2.3, its
Fourier transform, ZS(f), can be (1) real and symmetrical, (2)
imaginary and antisymmetrical, or (3) complex and Hermi-
tian. For these cases we can see that H(f) must be (1) imagi-
nary and antisymmetrical, (2) real and symmetrical, or (3)
complex and Hermitian, respectively. These results are sum-
marized in Table 5.1.

The second term in Equation 5.27 is real and antisym-
metrical; thus, we need a filter function such that its Fourier
transform is real and symmetrical at this frequency, satisfying
the condition:

(5.36)

Similarly, the second term in Equation 5.28 is real and sym-
metrical; thus, we need a filter function such that its Fourier
transform is imaginary and antisymmetrical at this fre-
quency, satisfying the condition:

(5.37)

F z x Z f H fS S S( ) ( ) ( ){ } =

H f H fS r S r( ) = −( )

H f H fC r C r( ) = − −( )



The terms with frequency 2fr (assuming f = fr) are asymmet-
rical; that is, they are neither symmetrical nor antisymmet-
rical. Even more, the degree of asymmetry is not predictable,
as it depends on the phase of the signal. So, the only solution
is that the Fourier transforms of the filtering functions must
have zeros at this frequency, as follows:

(5.38)

Besides these conditions, the filtering function h(x) must
not modify the ratio between the constant (zero frequency)
terms in the functions in Equations 5.27 and 5.28, thus also
requiring that

(5.39)

These conditions in Equations 5.36 to 5.39 are quite general.
The number of possible filter functions, continuous and dis-
crete, that satisfy these conditions is infinite. Each pair of
possible filter functions leads to a different algorithm with
different properties.

A particular case of the conditions in Equations 5.36 and
5.37 is the stronger condition:

TABLE 5.1 Necessary Properties of the Fourier Transform 
of the Filtering Function To Make the Right-Hand Side of 
Equation 5.35 Imaginary and Antisymmetrical

Sinusoidal
Component of z(x)

Fourier Transform 
ZS(fr) or ZC(fr) Function H(fr)

Real and 
symmetrical

Real and 
symmetrical

Imaginary and 
antisymmetrical

Real and 
antisymmetrical

Imaginary and 
antisymmetrical

Real and 
symmetrical

Real and 
asymmetrical

Complex and 
Hermitian

Complex and 
Hermitian

H f H f

H f H f

S r S r

C r C r

2 2 0

2 2 0

( ) = −( ) =

( ) = −( ) =

H HS C0 0( ) = ( )



(5.40)

which occurs when the sampling points distribution satisfies
Equation 5.10. In this case, the two filter functions become
identical at all frequencies.

A continuous filtering function with continuous sampling
points, satisfying Equation 5.10, is the square function:

(5.41)

for which the Fourier transform has zeros at nfr, where n is
any nonzero integer. We then see that this filtering process is
equivalent to performing the integration in a finite limited
interval, as suggested before.

5.3 DISCRETE LOW-PASS 
FILTERING FUNCTIONS

This section describe some discrete sampling low-pass filter-
ing functions. We write the filtering functions hS(x) and hC(x)
for the sampled signal process as:

(5.42)

and

(5.43)

where αn are the positions of the sampling points. The Fourier
transforms of these functions are given by:

(5.44)
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and

(5.45)

where wSn and wCn are the filtering weights.
Filtering functions of special interest are the discrete

functions with equally spaced and uniformly distributed sam-
pling points in a signal interval, as stated by Equation 5.10.
The filtering functions hS(x) and hC(x) satisfy Equation 5.39,
thus they are identical and equal to h(x) with all the filtering
weights equal to one. With this filtering function, the synchro-
nous detection method (as expressed by Equation 5.26) may
become identical to the diagonal least-squares algorithm, as
expressed by Equation 5.15.

To consider this case, we impose the condition that the
sampling points have a constant separation (Δα) and that the
first point is at the position α = 0, as in Equation 5.10. This
expression then becomes:

(5.46)

Hence, the power spectrum of this filtering function is:

(5.47)

It is illustrated in Figure 5.7a for the case of an infinite
number of points and in Figure 5.7b for the discrete case of
five sampling points.

We see that the zeros and peaks of this function occur at
frequencies n/(NΔα), where n is any integer, and at the zeros
when n/N is not an integer; thus, we have N – 1 minima
(zeros) between two consecutive lobes. A lobe exists at zero
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frequency (n = 0). Because we want zeros at the signal fre-
quency (fS) and at twice this frequency, we need at least three
sampling points (N ≥ 3). In order to locate the first two zeros
at these frequencies, we require equally and uniformly spaced
sampling points on the signal period:

(5.48)

This condition is the same as that in Equation 5.10 and is
used in order to make the least-squares matrix diagonal; thus,
if we use the filtering function h(x) for equally spaced sam-
pling points, we obtain Equation 5.19.

We may see that the zeros of this function occur at fre-
quencies nf, with the exception of Nf and integer multiples of
Nf, where n is any integer and N is the number of sampling
points. Because we must filter out frequencies f and 2f, we
must have at least three sampling points (N = 3) to have at
least two minima (zeros) between two consecutive peaks of
the filtering function. Filtering functions and data sampling
windows have been studied by de Groot (1995).

Figure 5.7 Spectrum of the filtering function when five points are
used to sample a sinusoidal function.
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5.3.1 Examples of Discrete Filtering Functions

To better illustrate the concept of discrete filtering functions,
let us now describe three interesting algorithms that will be
studied in more detail from another point of view in the next
chapter.

5.3.1.1 Wyant’s Three-Step Algorithm

Wyant’s three-step algorithm (Wyant et al., 1984; see Section
6.2.3) uses three sampling points, located at –45°, 45°, and
135°. This algorithm is obtained if we use the filtering func-
tions:

(5.49)

and

(5.50)

where Xr = 1/fr. These two filtering functions are different.
The Fourier transforms of these functions are:

(5.51)

and

(5.52)

We can see that, although the two filtering functions are
different, the amplitudes of the two Fourier transforms are
equal, as shown in Figure 5.8. A zero of this amplitude occurs
at 2fr, as required by Equation 5.38. The conditions in Equa-
tions 5.36 and 5.39 are also satisfied.
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5.3.1.2 Four-Steps-in-Cross Algorithm

The four-steps-in-cross algorithm (see Section 6.3.1) uses four
sampling points, located at 0°, 90°, 180°, and 270°. This is a
diagonal least-squares algorithm. It can be obtained if we use
the filtering function:

(5.53)

The Fourier transform of this function is:

(5.54)

and its amplitude is shown in Figure 5.9. We can see that the
amplitude has zeros at the reference frequency (fr) and at
twice this frequency. Conditions in Equations 5.38 to 5.40 are
thus satisfied.

Figure 5.8 Amplitudes of the Fourier transforms of the filtering
function for Wyant’s algorithm.
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5.3.1.3 Schwider–Hariharan Five-Step 
(4 + 1) Algorithm

The Schwider–Hariharan five-step (4 + 1) algorithm (Schwider
et al., 1983; Hariharan et al., 1987; see Section 6.5.2) uses five
sampling points, located at 0°, 90°, 180°, 270°, and 360°. This
algorithm is obtained when we use the filtering function:

(5.55)

The Fourier transform of this function is:

(5.56)

and its amplitude is shown in Figure 5.10. We can see that the
amplitude of this Fourier transform of the filtering functions
has zeros at the reference frequency and at twice the reference
frequency, thus satisfying Equations 5.38, 5.39, and 5.40. 

Figure 5.9 Amplitude of the Fourier transform of the filtering
function for the four steps in the cross algorithm.
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It is interesting to notice in Equations 5.27 and 5.28, as
well as in Figure 5.3, that the term with frequency fr is fixed,
and its position is independent of any possible difference
between the reference frequency (fr) and the signal frequency
(f) (detuning). On the other hand, the Fourier components with
the lowest frequency and with frequency f + fr may have slight
frequency variations with this frequency deviation. The slope
of the amplitude in these two regions is nearly zero, making
this algorithm insensitive to small detuning.

5.4 FOURIER DESCRIPTION OF 
SYNCHRONOUS PHASE DETECTION

In this section we will study the synchronous detection in a
more general manner, from a Fourier domain point of view, as
developed by Freischlad and Koliopoulos (1990) and Parker
(1991) and later reviewed by Larkin and Oreb (1992). If we
want to remove the restriction of equally and uniformly spaced
sampling points, the product of the sine function and the low-
pass filtering function h(–x) must be more generally considered,
as the function g1(x). This function does not necessarily have
to be the product of a sine function by a filtering function. In

Figure 5.10 Amplitude of the Fourier transform of the filtering
function for the Schwider–Hariharan algorithm.

4

3

2

1

0

−1

−2

−3

−4
1 2 3 4 5 6 7 8 9 10

Normalized frequency

A
m

pl
itu

de

Am (H(f ))



an analogous manner, the function g2(x) replaces the product
of the cosine function by the filtering function. These two func-
tions will be referred to as the sampling reference functions.

The treatment here considers synchronous detection
with the following two general assumptions:

1. The signal to be detected is periodic but not necessarily
sinusoidal; in other words, it may contain harmonics.

2. The two reference functions, g1(x) and g2(x), are used
instead of the products of the sine and cosine func-
tions by the low-pass filtering function.

This approach will allow us to analyze many possible sources
of errors. It will also permit the study of the detection of a
sinusoidal signal with a frequency other than that of the
reference functions.

A real periodic distorted signal, s(x), as shown in Figure
5.11, has several harmonic frequencies — that is, frequencies
that are integer multiples of the fundamental frequency f —
and may be written as:

(5.57)

or, equivalently,

(5.58)

where we have defined S–m = –Sm, φ–m = –φm, and φ0 = 0.

Figure 5.11 A periodic distorted signal and its spectrum.
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Thus, the Fourier transform of this signal may be repre-
sented by:

(5.59)

In this expression, m is the harmonic component number; Sm

and φm are the amplitude and phase at the origin, respectively,
of the harmonic component m; and f is the fundamental fre-
quency of the signal.

The two sampling reference functions, gi(x), are real and
not necessarily periodical but they do have a continuous Fou-
rier transform with many sinusoidal components with differ-
ent frequencies. Also, the sinusoidal elements of the two
functions do not necessarily have the same amplitude nor are
they necessarily orthogonal at any frequency, only at certain
selected frequencies. In order to use these sampling functions
as references, their Fourier elements at the desired reference
frequency of these functions must be orthogonal, must have
the same amplitude, and must not have any DC bias. Ideally,
the reference frequency is the fundamental frequency of the
signal to be detected. Because in general this is not known
with a high degree of accuracy, we define the reference fre-
quency as the assumed fundamental frequency of the signal.
In other words, the elemental reference components δgi(x) at
the reference frequency ideally should be the typical sine and
cosine functions:

(5.60)

and

(5.61)

where ψ(fr) is the displacement in the positive direction of the
Fourier element δgi(x) with frequency fr of the reference func-
tion gi(x), with respect to the origin of the phase. The frequency
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interval, δf, is formed by two symmetrical intervals placed to
cover positive as well as negative frequencies with value |fr |.
The first maxima of the Fourier transform Gi(f) is frequently
located near the reference frequency (fr) but not necessarily.

We have seen before that the phase is the ratio of the
two convolutions in Equations 5.33 and 5.34, using the proper
filtering function. On the other hand, we also have seen that
if the goal is to find the phase at the origin (φ), we need to
evaluate the convolution only at this origin. So, it is reason-
able to expect that the phase will be given by the ratio r(f) of
the correlations:

(5.62)

if the functions g1(x) and g2(x) are properly selected. This
correlation ratio is a function of signal frequency f, as well as
of the signal phase (φ). If the two reference functions, g1(x)
and g2(x), satisfy the intuitive conditions stated earlier, by
analogy with Equation 5.28 we can expect the phase (φ) of
the signal harmonic with frequency f being detected to be
given by:

(5.63)

We will prove this expression to be correct if these conditions
are satisfied; otherwise, the phase φ cannot be found with this
expression. Let us now study with some detail when these
conditions are satisfied. The quantity Cj has been defined as:

(5.64)

which is the cross-correlation of the two functions evaluated
at the origin, s(x) and gi(x). For simplicity, we will simply call
these quantities correlations.
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We can see that the ratio of the correlations r(f) is a
function of the reference and signal frequencies and that it is
directly related to the phase of the real signal only if the
proper conditions for the functions gj(x) are met. From the
central ordinate theorem expressed by Equation 2.14 we find:

(5.65)

evaluated at the origin (f = 0), because the quantity to be
determined is the phase of the fundamental frequency of the
signal with respect to the phase of the reference functions.
Now, using the convolution theorem in Equation 2.18, we find:

(5.66)

where S(f) and Gj(f) are the Fourier transforms of s(x) and
gj(x), respectively. Hence, writing the convolution at f = 0, we
obtain:

(5.67)

where ν is the dummy variable used in the convolution.
Because s(x) and gj(x) are real, S(f) and Gj(f) are Hermitian
and we obtain:

(5.68)

where Re stands for the real part, and the symbol * denotes
the complex conjugate. For clarity, the dummy variable ν has
been changed to the frequency variable f.

If we substitute here the value of S(f) from Equation 5.59
we obtain:

(5.69)
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The reference functions g1(x) and g2(x) are real; hence, their
Fourier transforms are complex and Hermitian. Quite gener-
ally, using Equation 2.5 we may express these functions Gj(f)
as:

(5.70)

where γj(f) is the phase of the Fourier element with frequency
f of the reference functions gj(x). Also, γj(–mf) = –γj(–mf)
because Gj(f) is Hermitian. Hence,

(5.71)

Because the argument of the exponential function is antisym-
metric with respect to m, this equation may also be written as:

(5.72)

This expression is valid for C1 as well as for C2 and for any
harmonic component of the signal with frequency mf. The
correlation ratio, r(f), is then given by:

(5.73)

This is a completely general expression for the value of r(f),
but, as pointed out before, it does not produce correct results
for the signal phase unless certain conditions are met, as will
be seen next. The elemental Fourier components of these
functions at the frequency of the signal being selected must
satisfy the following conditions, briefly mentioned previously:

G f G f i f jj j j( ) ( ) exp ( ) , ,= ( ) ( ) =Am γ 1 2

C S G mf i mf jj m j m j

m

= ( ) −( )( ) =
=−∞

∞

∑2 1 2Re ( ) exp ( ) , ,Am φ γ

C S Am G

S G mf mf j

j j

m j m j

m

= ( ) +

+ ( ) −( ) =
=

∞

∑

2 0

4 1 2

0

1

( )

( ) cos ( ) , ,Am φ γ

r f

S G S G mf mf

S G S G mf mf

m m

m

m m

m

( )

( ) ( ) cos ( )

( ) ( ) cos ( )

=
( ) + ( ) −( )

( ) + ( ) −( )
=

∞

=

∞

∑
∑

0 1 1 1

1

0 2 2 2

1

0 2

0 2

Am Am

Am Am

φ γ

φ γ



1. The Fourier elements of the reference functions g1(x)
and g2(x) must have a zero DC term. Also, the Fourier
transforms G1(f) and G2(f) of the two reference func-
tions at zero frequency must be equal to zero.

2. All interference (cross-talk) between undesired har-
monics in the signal and in the reference functions
must be avoided.

3. The Fourier elements of the reference functions g1(x)
and g2(x) at frequency fr must be orthogonal to each
other. This means that the Fourier transforms G1(f)
and G2(f) of the two reference functions at frequency
fr must have a phase difference equal to ±π/2. The
plus sign corresponds to the upper sign in Equation
5.57, and the phase of G2(f) is π/2 greater than the
phase of G1(f).

4. The Fourier transforms G1(f) and G2(f) of the two
reference functions at frequency fr must have the
same amplitude.

Given a reference frequency, these four conditions can in
general be satisfied only at certain signal frequencies. To
illustrate these conditions, Figure 5.12 illustrates the Fourier
spectra of two reference functions plotted together with the
Fourier spectra of a periodical signal. Here, we notice the
following for the functions G1(f) and G2(f):

1. They pass through the origin, indicating that their
DC bias is zero.

Figure 5.12 Fourier spectra of the two reference functions and a
signal.
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2. The harmonics of the signal are located at zeros of
these functions.

3. The functions have the same amplitude and sign at
the fundamental frequency of the signal, f. If these
functions are also orthogonal to each other, all con-
ditions are satisfied at the fundamental frequency of
the signal.

Let us now consider the four conditions listed above and
apply them to Equation 5.71. The first condition of a zero DC
term may be easily satisfied if, from the central theorem
studied in Chapter 2, we write:

(5.74)

Then Equation 5.73 becomes:

(5.75)

The second condition (no interference from undesired harmon-
ics) is satisfied if, for all harmonics m, with the exception of
the fundamental frequency, which is being measured, we have:

(5.76)

This means that the harmonic components m > 1 should not
be present, either in the signal or in the reference functions.
Obviously, if the signal is perfectly sinusoidal, this condition
is always satisfied.

Applying these two conditions to a sinusoidal signal with
frequency f, Equation 5.73 becomes:

(5.77)
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During the phase-detection process, the frequency of the sig-
nal has to be estimated so the reference frequency (fr) is as
close as possible to this value. We say that a detuning error
has occurred if the reference frequency (fr) is different from
the signal frequency (f).

Now, we need to satisfy only two more conditions. For
the two elements of the two reference functions to be orthog-
onal to each other at the reference frequency (fr), we need:

(5.78)

at the harmonic m being considered. The sign of the reference
sampling functions is chosen so that the Fourier transforms
of the reference sampling functions at the reference frequency
are both positive (or both negative). Then, the upper (minus)
sign is taken when the phase of G2(fr) is π/2 greater than the
phase of G1(fr). This case corresponds to the upper sign in
Equation 5.60. Thus, the phases γ1(fr) and γ2(fr) at the reference
frequency in Equation 5.70 are related by:

(5.79)

The values of these angles depend on the location of the point
selected as the origin of the coordinates (x = 0).

The condition that the amplitudes of the Fourier compo-
nents at the frequency being detected are equal requires that

(5.80)

Thus, applying these last two conditions, we finally obtain:

(5.81)

where, as noted previously, the upper sign is taken when the
phase of G2(fr) is π/2 greater than the phase of G1(fr) (i.e., γ2(fr)
> γ1(fr)), and vice versa.
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We have defined ψ(fr) as the phase displacement in the
positive direction of the zero phase point of the Fourier ele-
ments of the reference functions with frequency fr, with
respect to the origin of coordinates, which now we can identify
with γ2(fr). Thus, we can write:

(5.82)

We see that when ψ(fr) is equal to zero, the function G2(f)
becomes real at the reference frequency. In this case, the
function element δg1(x) is antisymmetrical. In other words,
the origin of coordinates is located at the zero phase point of
this sine function.

To conclude, the signal phase is given by:

(5.83)

as was intuitively expected.

5.5 SYNCHRONOUS DETECTION 
USING A FEW SAMPLING POINTS

Let us now apply the general theory of synchronous detection
just developed to the particular case of a discrete sampling
procedure using only a few sampling points. As illustrated in
Figure 5.13, let us take N ≥ 3 points with their relative phases
αn, referred to the origin Oα. The phases of the sampling
points are measured with respect to the origin of the refer-
ence function, which may be located at any arbitrary position,
not necessarily the origin of coordinates or any sampling
point in particular. Thus, we obtain N equations from which
the signal phase (φ) at the origin of the reference function
may be calculated.

The location of the phase origin, Oα, for the sampling
points is the same as the zero phase point for the sampling
reference functions at the reference frequency, but not neces-
sarily at any other frequency. According to the translation
property in Fourier theory, because the two reference func-
tions are orthogonal to each other at the reference frequency

ψ γf fr r( ) = ( )2

tan tanφ ψ φ γ− ( )( ) = − ( )( ) = ( )f f r fr r r2 m



(fr), the location of the zero phase point with respect to the
sampling points may be selected so that the Fourier transform
G1(fr) is real and the Fourier transform G2(fr) is imaginary, or
vice versa.

Given a phase-detecting sampling algorithm for which
we have defined the positions of the sampling points with
respect to the origin of coordinates (x = 0) and their associated
sampling weights, the value of γ2(fr) is already determined
and its value can be found after the Fourier transform G2(f)
has been calculated. Thus, we have:

(5.84)

A common approach in most sampling algorithms is to
place the zero phase origin, Oα (i.e., the origin of the reference
functions cos(2πfrx) and sin(2πfrx)), at the coordinate origin,
Ox, thus making γ2(fr) = 0, as shown in Figure 5.13b. Then,

Figure 5.13 Sampling a signal with equally spaced points.
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the sampling points are shifted so that G1(f) becomes imagi-
nary and G2(f) becomes real at the reference frequency. Two
interesting particular cases when this occurs are:

1. When g1(x) is symmetrical and g2(x) is antisymmet-
rical about the point with phase mπ, where m is any
integer

2. When g1(x) is antisymmetrical and g2(x) is symmet-
rical about the point with phase (m + 1/2)π, where m
is any integer

If desired, the first sampling point may be placed at the
coordinate origin, but frequently this is not the case.

5.5.1 General Discrete Sampling

If we sample N points, with an arbitrary separation between
them, we can see that the sampling reference functions are
then given by:

(5.85)

and

(5.86)

where the Win are the sampling weights for each sampling
point, and N is the number of sampling points with coordi-
nates x = xn. The Fourier transforms of these sampling refer-
ence functions are:

(5.87)

and

(5.88)

but from Equation 5.84 we can write:
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(5.89)

Hence, these Fourier transforms become:

(5.90)

and

(5.91)

Now, because the reference functions are to be orthogonal
to each other and have the same amplitude at the frequency
f = fr , we need, as in Equation 5.74,

(5.92)

where as usual the upper (minus) sign indicates that the
phase of G2(fr) is π/2 greater than the phase of G1(fr); that is,
γ1(fr) < γ2(fr). Using this expression with Equations 5.87 and
5.88, we find:

(5.93)

Thus, we have:
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or

(5.95)
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which can be true only if:

(5.96)

and

(5.97)

We can now define the Fourier transform vectors G1 and
G2 as:

(5.98)

and

(5.99)

where, from Equations 5.87 and 5.88, we see that the x and y
components of the vector are the real and imaginary parts of
the Fourier transforms of the reference functions. These Fou-
rier transform vectors can also be written as:

(5.100)
and

(5.101)

where this is a vector sum of the vectors Gin defined by:

(5.102)

If we use these vectors in Equations 5.96 and 5.97, we
will see that the vectors are orthonormal; that is, they are
mutually perpendicular and have the same magnitude at the
frequency fr. Thus, we may say that the two reference sam-
pling functions are orthogonal and have the same amplitude
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if the two Fourier transform vectors are mutually perpendic-
ular and have the same magnitude, as illustrated in Figure
5.14. The angle of G1 is π/2 greater than that of G2 for the
upper sign. The angle of G1 with respect to the positive hor-
izontal axis is equal to γ1(fr). In the same manner, the angle
of G2 with the positive horizontal axis is equal to γ2(fr).

Quite frequently, the phase origin in algorithms is located
at a point such that G1(f) is imaginary and G2(f) is real at the
reference frequency. Under these conditions, vector G1 is ver-
tical, vector G2 is horizontal, and Equations 5.96 and 5.97
may be written as:

(5.103)

(5.104)

and

(5.105)

Figure 5.14 Sampling reference vectors for a sampling algorithm.
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Additionally, we must have no bias in the reference func-
tions, which is true if:

(5.106)

and

(5.107)

The value of the phase φ may be calculated by using
Equations 5.75 and 5.86 in Equation 5.62 and then using
Equation 5.82 to obtain:

(5.108)

The upper sign corresponds to the cases when γ1(fr) – γ2(fr) <
0, and the lower sign otherwise. As pointed out before, the
constant phase γ2(fr) in most algorithms is equal to zero.

5.5.2 Equally Spaced and Uniform Sampling

A frequent, particular case is when the sampling points are
equally separated and uniformly distributed in the signal
period Xr, with the positions defined as in Equation 5.10 by:

(5.109)

In this expression, the origin (Oα) for the reference function
and the first sampling point was taken at the origin of coor-
dinates (Ox), as shown in Figure 5.13b. The reference fre-
quency (fr) is defined as 1/Xr and is usually equal to the signal
frequency but may differ.

As described in Section 5.1, with this sampling distribu-
tion we have:
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(5.110)

(5.111)

(5.112)

and

(5.113)

These results are independent of the location of the origin for
the phases — that is, for any value of γ2(fr). The reason for
this becomes clear if we notice that the vector diagram in
Figure 5.2 remains in equilibrium when all vectors are rotated
by an angle γ2(fr).

The condition of no DC term (bias) on the reference func-
tions is expressed by Equations 5.106 and 5.107. From Equa-
tion 5.112, we can see that:

(5.114)

and from Equation 5.113:

(5.115)
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Now, we can see that these two last expressions become iden-
tical to Equations 5.96 and 5.97 if the sampling weights are
defined by:

(5.116)

and

(5.117)

When γ2(fr) = 0, Equations 5.110, 5.111, 5.114, and 5.115 are
the same as those used in Section 5.1 in order to make the
least-squares matrix diagonal.

Now, we can obtain the phase value with the ratio of the
correlations by using the sampling weights in Equation 5.108,
assuming that γ2(fr) = 0:

(5.118)

and the signal may be calculated with Equation 5.83. As
pointed out before, the upper sign is used when γ1(fr) < 0. This
result is the diagonal least-squares algorithm.

We have pointed out before that the location of the origin
of coordinates is important because it affects the algebraic
appearance (phase) of the result; however, for any selected
origin location, the relative phase for all points is the same.
The two typical locations for the origin are (1) the first sam-
pling point or (2) the zero phase point for the Fourier elements.

5.5.3 Applications of Graphical 
Vector Representation

Graphical vector representation has three quite interesting
properties:

1. By examining the vectors of any two algorithms that
satisfy the conditions for orthogonality and equal
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amplitudes of G1(f) and G2(f), we can see that a super-
position of both algorithms also satisfies the required
conditions.

2. Any vector system with zero bias and in equilibrium
may be added to the system without changing the
conditions of either orthogonality or equal ampli-
tudes at the reference frequency.

3. A detuning shifts the angular orientations of the vec-
tors Wij a small angle (β) directly proportional to their
phase (αn).

To illustrate, let us consider the effect of detuning using vector
representation in two algorithms with three sampling points.
The first one to be considered is shown in Figure 5.15. The
three points have phases 0°, 90°, and 180°; however, in the
presence of detuning, as shown in this figure, the sampling
points have phases 0°, 90° + β, and 180° + 2β. Examining the
vector plots on the left side of this figure, we see that the

Figure 5.15 Effect of detuning in a three-point algorithm (inverted
T); the upper part shows the effects on g1 and G1n, and the lower part
shows the effects on g2 and G2n.
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vector sums G1 and G2 are both rotated by angle β, thus
preserving their orthogonality. Because β is arbitrary, the
orthogonality condition is preserved at all frequencies, but
the amplitudes are not.

Figure 5.16 shows another algorithm, where the sam-
pling points are located at –45°, 45°, and 135°. In the presence
of detuning, the three phases will be –(45° + β), (45° + β), and
(135° + 3β), and the vectors on the left side of the figure are
angularly displaced. We may easily observe that the angle
between vectors G1n is preserved, as is the angle between
vectors G2n. Thus, the amplitudes of G1(f) and G2(f) are pre-
served, but their orthogonality is not.

5.5.4 Graphic Method To Design 
Phase-Shifting Algorithms

Using this theory of phase-shifting algorithms, Malacara-
Doblado et al. (2000) proposed a method to design such algo-
rithms with particular desired properties. The reference func-
tions g1(x) and g2(x) are assumed to be formed by a linear
combination of symmetric and antisymmetric components,
respectively. Thus, we can write Equation 5.85 and 5.86 as:

Figure 5.16 Effect of detuning in a three-point algorithm (Wyant’s);
the upper part shows the effects on g1 and G1n, and the lower part
shows the effects on g2 and G2n.
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(5.119)

where h1k(x) and h2k(x) are the symmetric and antisymmetric
harmonic components, respectively. The number of sampling
points is N, and the number of harmonic components is K. In
this case, the reference functions g1(x) and g2(x) will always
be orthogonal at all frequencies. The zero bias condition is
guaranteed if the weight of the central sampling points for
the symmetrical harmonic components is set such that the
sum of all weights is zero, thus obtaining:

(5.120)

where the coordinate xk is given by:

(5.121)

and αk = β, where α is the angle of separation between two
consecutive sampling points.

The Fourier transform amplitudes of these harmonic
components, H1k(f) and H2k(f), are shown in Figure 5.17 for a
phase separation between the sampling points equal to β =
π/2. The Fourier transforms of the sampling functions, G1(f)
and G2(f), are given by:

(5.122)
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These Fourier transforms of the harmonic components of the
sampling functions can be used to design a sampling algo-
rithm with the desired properties. For example, let us consider
those shown in Figure 5.18:

Figure 5.17 Symmetrical location of sampling points.

Figure 5.18 Fourier transforms of harmonic components pro-
duced by a pair of symmetrically located sampling points.
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1. The component H14(f) has a zero at the normalized
frequency equal to one (f = fr); thus, this component
can be added with any multiplying weight (w14) with-
out modifying the final value of G1(f) at the frequency
f = fr. Its only effect would be to change the slope of
this function at this frequency.

2. The components H12(f) and H16(f) have zero slope at
the normalized frequency equal to one; thus, they can
be added with any desired weight without modifying
the slope of G1(f) at this frequency. Only the ampli-
tude will be changed.

In general, by examining the zeros and slopes of these har-
monic components at the fundamental frequency of the signal
(f = fr) and its harmonics (f = kfr), the desired properties for
the algorithm can be obtained.

5.6 SIGNAL AMPLITUDE MEASUREMENT

Not only can the phase of the signal be obtained with phase-
shifting algorithms but also its amplitude. Assuming for sim-
plicity that γ2(fr) = 0, as in most phase-shifting algorithms,
then from Equations 5.73 and 5.108 we can write:

(5.123)

where S1 is the signal amplitude (fundamental component).
We know that at the reference frequency the amplitudes of
the Fourier transforms of G1(fr) and G2(fr) are equal and we
assume that γ2(fr) = 0, so from Equations 5.102 and 5.103 we
obtain:
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(5.124)

If we equate the numerators and the denominators in
Equation 5.108, we obtain:

(5.125)

and

(5.126)

Squaring these two last expressions we finally obtain:

(5.127)

Thus, any phase-shifting algorithm can be used to measure
the signal amplitude. The second term in the denominator
becomes zero if γ2(fr) = 0.
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5.7 CHARACTERISTIC POLYNOMIAL 
OF A SAMPLING ALGORITHM

A characteristic polynomial that can be used with a discrete
sampling algorithm was proposed by Surrel (1996). This poly-
nomial can be used to derive all the main properties of the
algorithm in a manner closely resembling the Fourier theory
just described. To define this polynomial, let us use Equation
5.108, considering that the phase φ is given by the phase of
the complex function, V(φ), defined by:

(5.128)

where ψ(fr) = 0. Then, using the Fourier expansion for the
signal given by Equation 5.58 in this expression, we find:

(5.129)

where φ = φ1 is the phase of the signal at the fundamental
frequency. Different harmonic components have different
phases. Now, from Equation 5.89 we have:

(5.130)

where αn is the phase for the sampling point n. This phase
may be assumed to be equal to αn = (n – 1)Δα, where Δα is
the phase interval separation between the sampling points,
transforming this expression into:

(5.131)

In the absence of detuning, such that f = fr, then this expres-
sion can be written as:
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(5.132)

where the polynomial P(z) is defined by:

(5.133)

This is the characteristic polynomial proposed by Surrel (1996)
that is associated with any sampling algorithm. It is quite
simple to derive this polynomial from the sampling weights
Win. From this characteristic polynomial we can determine
many interesting properties of the sampling algorithm with
which it is associated.

Let us first consider the case of no detuning (f = fr). We
assume, however, that the signal has harmonic distortion. The
signal harmonic component m (m ≠ 1) will not influence the
value of the complex function V(φ) if the polynomial P(z) has
a root (zero value) for the value of z that corresponds to that
harmonic.

Each complex value of z is associated with a harmonic
number (m) by:

(5.134)

These values of z may be represented in a unit circle in the
complex plane. Given a sampling algorithm, the value of the
phase interval Δα between sampling points is fixed; that is,
each possible value of the harmonic number (positive and
negative) has a point, as illustrated in Figure 5.19, which is
a characteristic diagram of the sampling algorithm.

In the presence of detuning (f ≠ fr) we can expand a Taylor
series to obtain:

(5.135)
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In this case, we observe insensitivity to the harmonic compo-
nent (m) as well as to detuning of that harmonic only if both
P(z) and its derivative have roots at the corresponding value
of z. In other words, a double root must lie at that value of z.

Following are some of the important properties of this
characteristic diagram:

1. An algorithm is insensitive to the harmonic compo-
nent (m) if the characteristic polynomial has zeros
for the values of z corresponding to ±m. To state it in
a different manner, the algorithm is insensitive to
harmonic m when m ≠ 1 if both exp(–imΔα) and
exp(imΔα) are roots of the characteristic polynomial.

2. If only exp(–imΔα) with m > 0 is a root and exp(imΔα)
is not a root of the characteristic polynomial, then
that harmonic component can be detected. If the fun-
damental frequency (m = 1) is to be detected, as is
normally the case, exp(–iΔα) should be a root and
exp(iΔα) should not be.

3. In an analogous manner, it is possible to prove insen-
sitivity, as well as detuning insensitivity, to harmonic
m (m = 1) if a double zero occurs at the values of z
corresponding to the αm harmonic components. In

Figure 5.19 Points for each harmonic number for a sampling
algorithm. If a polynomial root exists at any sampling point, the
point is plotted with a large dot. If a double root exists, it is plotted
with a circle around the dot.
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other words, both exp (imΔα) and exp (–imΔα) are
double roots of the characteristic polynomial.

4. If only exp(–imΔα) with m > 0 is a double root and
exp(imΔα) is not a root of the characteristic polyno-
mial, then that harmonic component can be detected
with detuning insensitivity. If the fundamental fre-
quency (m = 1) is to be detected with detuning insen-
sitivity, exp(–iΔα) should be a double root and
exp(iΔα) should not be a root.

As an example, let us consider the Schwider–Hariharan
algorithm with Δα = 90° (studied in greater detail in Chapter
6). The phase equation is:

(5.136)

thus, the corresponding characteristic polynomial is:

(5.137)

We can observe that the signal may be detected with detuning
insensitivity at the fundamental frequency and also at the
fifth harmonic. The characteristic diagram for this algorithm
is shown in Figure 5.20.

Many other properties can be derived from a detailed
analysis of the characteristic diagram of a sampling algo-
rithm. A close connection exists between such a characteristic
diagram and the Fourier theory studied earlier. The charac-
teristic diagrams for many sampling algorithms have been
described by Surrel (1997).

5.8 GENERAL ERROR ANALYSIS OF 
SYNCHRONOUS PHASE-DETECTION 
ALGORITHMS

The theory developed in this chapter permits error analysis of
sampling algorithms used for the synchronous detection of
periodical signals. Some possible sources of error are discussed
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in this section. In the treatment by Freischlad and Koliopoulos
(1990), we have seen that, if the four conditions required in
Section 5.4 are satisfied, the phase can be determined without
any error. With proper algorithm design, these conditions are
satisfied when the reference frequency (fr) is equal to the fre-
quency of a harmonic component of the signal to be detected.
If one or more of the four conditions is not satisfied, an error
may occur regarding the calculated phase.

5.8.1 Exact Phase-Error Analysis

We will now perform an exact phase-error analysis for the
case of no harmonic components — that is, when the signal
is sinusoidal and the phase shifts are linear. In the absence
of any phase error, when the four conditions are satisfied, the
phase is calculated with:

(5.138)

but, in the presence of an error, the calculated phase with the
phase error introduced becomes:

(5.139)

Figure 5.20 Characteristic diagram for a detuning-insensitive
algorithm (Schwider–Hariharan).
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where δφ(φ, f) is the phase error, which is a function both of
the signal phase φ and the signal frequency f. Using a well-
known trigonometric expression, we can write:

(5.140)

and from this expression we can find:

(5.141)

This is a completely general expression for the phase error if
one or more of the four required conditions is not fulfilled.
Depending on which condition is not met, the ratio of the two
correlations r(f) defined by Equation 5.62 can be calculated
as follows:

1. In the general case, Equation 5.73 can be used when
one or more of the four conditions fails.

2. If the zero bias condition is the only one being satis-
fied, Equation 5.75 can be used.

3. If, besides satisfying the zero bias condition, the signal
is perfectly sinusoidal or no cross-talk between har-
monic components is present in the signal and in the
reference functions, then only the orthogonality con-
dition or the condition for equal amplitudes may be
not satisfied. In this case, Equation 5.77 can be used. 

We define the ratio, Δ(f), of the amplitudes of the Fourier
transforms of the sampling functions as:

(5.142)

By using this definition in Equation 5.77 (valid only if the
signal is sinusoidal) and substituting in Equation 5.141, we
obtain:

(5.143)
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Now, using this expression in Equation 5.41 we find:

(5.144)

which can also be written as:

(5.145)

where:

(5.146)

This is a general and exact expression for phase error due to
a lack of orthogonality of the sampling reference functions or
failure of the condition that their Fourier transform ampli-
tudes must be equal. This phase error is a function of the signal
phase φ and signal frequency f, but it can be decomposed into
two additive components, one that depends only on the fre-
quency and another that depends on both variables, as follows:

(5.147)

For a given frequency of the signal, the first term is a constant
(assuming the signal frequency is constant), thus acting as a
piston term when an interferogram is being evaluated. We can
easily see that the phase error is a periodic function with the
phase φ. So, the first or piston term can be evaluated with:

(5.148)
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5.8.2 Phase-Error Approximation 
in Two Particular Cases

The preceding analysis is exact if the two sampling functions
are not orthogonal or if their Fourier transforms do not have
the same amplitude, which may happen when the signal fre-
quency is different from the reference frequency. Let us
assume that the signal frequency is different but relatively
close to the reference frequency, so we can write:

(5.149)

We also assume that ψ(fr) = γ2(fr) = 0, which, as we said before,
is true in most phase-detecting algorithms. Then, we can
approximate the functions Hij by:

(5.150)

hence obtaining:

(5.151)

which can further be approximated by:
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where we should keep in mind that the signal is assumed to
be sinusoidal and that the phase shifts are linear.

Given a detuning magnitude, when measuring an inter-
ferogram the signal frequency is a constant in most cases,
with a few rare exceptions to be described later. The last term
in this expression is a constant phase shift for all points in
the wavefront, thus it acts like a piston term. In general, this
term does not have any practical importance and can be
ignored, so we obtain:

(5.153)

The phase error δφ(f) has a sinusoidal variation with the
signal phase at twice the frequency of the signal. This result
is valid for any kind of error where the conditions of orthog-
onality and equal amplitudes fail; however, when cross-talk
between harmonics is present (for example, when the signal
has harmonic distortion), this conclusion might not be true.
As pointed out by Cheng and Wyant (1985), the phase error
may be eliminated by averaging the results of two measure-
ments with opposite errors (see Chapter 6). The two measure-
ments must only have an offset of 90° with respect to each
other.

When only the condition of equal amplitudes fails, Δ(f)
is not equal to one and δγ1(f) = δγ2(f). Then, the cos(2φ) term
is sufficiently small so that we can neglect it and write:

(5.154)

As shown in Figure 5.21, in this case the phase error becomes
zero when the phase to be measured (φ) is an integer multiple
of π/2. This error has a peak value equal to (ρ(f) – 1)/2.

Finally, if only the orthogonality condition fails, ρ(f) is
equal to one, and the phase error is:
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(5.155)

We can see that, in this case, the phase error again oscillates
sinusoidally with the signal phase, between zero and a peak
value equal to the derivative of the phase difference γ2(f) – γ1(f)
with respect to the signal frequency (Figure 5.22). This phase
error becomes zero even in the presence of some detuning,
when the phase to be measured (φ) is equal to π/4 plus an
integer multiple of π/2. These expressions are the basis for
analysis of errors in phase-shifting interferometry, as is
described further in the next few sections.

5.9 SOME SOURCES OF PHASE ERROR

The sources of error in phase-shifting interferometry are many.
These errors have been studied by several researchers (e.g.,
Schwider et al., 1983; Cheng and Wyant, 1985; Creath, 1986,
1991; Ohyama et al., 1988; Brophy, 1990). Wingerden et al.
(1991) made a general study of many phase errors in phase-
detecting algorithms. They classified these errors as follows:

Figure 5.21 Phase error as a function of the measured phase for
an algorithm where the Fourier transforms G1(f) and G2(f) are
orthogonal at all frequencies.
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1. Systematic errors. The value of these errors varies
sinusoidally with respect to the signal phase with a
frequency equal to twice the signal frequency. These
errors have a constant amplitude and phase. By aver-
aging the measurements made with two algorithms
for which the sampling points in one algorithm are
displaced 90° with respect to those on the other algo-
rithm, the error can be canceled out.

2. Random errors with sinusoidal phase dependence.
Random additive noise affects the signal measure-
ments in such a manner that the noise errors corre-
sponding to any two different signal measurements
are statistically independent. Also, the noise is inde-
pendent of the signal frequency. Thus, we can con-
sider the noise amplitude and phase to be random,
not constant. As for systematic errors, these have a
sinusoidal phase dependence. The effect of the pres-
ence of additive noise on sampling algorithms has
been studied in detail by Surrel (1997). Mechanical
vibrations introduce this kind of noise if the fre-
quency is not too high, as is discussed later. Hariha-
ran (2000) has proposed using an average of many
measurements with different phase differences to
reduce these systematic phase errors. Hibino (1997)

Figure 5.22 Phase error as a function of the measured phase for
an algorithm where the Fourier transforms G1(f) and G2(f) have
equal amplitudes at all frequencies.
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has proved that a phase-detection algorithm designed
to compensate for systematic phase errors may
become more susceptible to random noise and give
larger random errors in the phase.

3. Random errors without phase dependence. The value
of these errors is independent of the phase of the
measured signal. The case of additive random errors
with a Gaussian distribution has been studied in
depth by Rathjen (1995) and is described here in
some detail.

We have seen that the phase error when any of four
conditions are not fulfilled can be calculated by means of
Equation 5.145, and several particular cases were considered.
Expressions for the analysis of phase errors were given that
can be applied to the calculation of errors in phase-shifting
interferometry, as described in the next few sections.

5.9.1 Phase-Shifter Miscalibration 
and Nonlinearities

If the phase-shifter device is not well calibrated or its response
is not linear, the target phase shift (α) is not the real phase
shift (α′). This effect can be represented by the expression:

(5.156)

where α is the target or reference value of the phase shift and
α′ is the real obtained value. The linear and quadratic error
coefficients are γ1 and γ2, respectively.

When we have only linear and quadratic errors and we
require the total error to be zero at the beginning (α = α1 =
0) and at the end (α = αN) of the reference period, we need to
add an extra linear term so the total linear error coefficient
becomes:

(5.157)
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which can be done only after measuring the phase errors. The
phase errors may be interpreted in two different ways.

5.9.1.1 Error in the Sampling 
Reference Functions

An error is in the actual phase shift or, equivalently, on the
interferometer optical path difference, so the sampling points
are displaced from their correct positions, as shown in Figure
5.23, but the signal to be detected remains unmodified. The
phase (αn) for each sampling point with the error being intro-
duced is used in the sampling reference functions in Equa-
tions 5.85 and 5.86, thus giving us a modified set of functions

and :

(5.158)

and

(5.159)

where Δxn = Δαn/(2πfr). Thus, from Equations 5.87 and 5.88,
the Fourier transforms of these sampling reference functions
are:

(5.160)

Figure 5.23 Displaced sampling points due to linear phase error.
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and

(5.161)

The error-free Fourier transforms are orthogonal to each other
and have the same magnitude at the reference frequency;
nevertheless, with the phase error added, either of the two
conditions or both will fail. These modified Fourier transforms
then allow us to compute the phase error, as will be described
later in some detail.

5.9.1.2 Error in the Measured Signal

In this model, we consider that the signal is phase modulated
by the error and that the sampling point positions are correct.
If we consider a phase-modulated signal, we see that the
phase modulation is a nonperiodic function of α; thus, the
signal is not periodic and the Fourier transform of the signal
is no longer discrete but continuous. Figure 5.24a shows the

Figure 5.24 (a) Plots of the error-free signal (dotted curve) and
the signal with error (continuous curve); (b) difference between these
two signals. The value ε2 = 0.05 was used.
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error-free signal and the signal phase modulated with the
error. The difference between these two signals is shown in
Figure 5.24b. Because the Fourier transform is not discrete,
in order to find the correct phase the correlations between
the reference sampling functions and the signal must be
found using the integrals in Equation 5.62. The phase errors
would have no importance at all if their values were inde-
pendent of the signal phase. In that case, the error would be
just a constant piston term on the measured wavefront.
Unfortunately, this is not the case. We have seen before that
the phase errors have a value that varies sinusoidally with
the signal phase.

5.9.2 Measurement and Compensation 
of Phase-Shift Errors

This problem has been studied by several authors (e.g., Ram-
son and Kokal, 1986). In the case of small detuning and a
signal frequency deviating from the reference frequency, the
zero bias condition is preserved. If the signal is assumed to be
sinusoidal, the condition for no cross-talk between the signal
and reference function harmonics is also preserved. The con-
ditions for orthogonality and equal magnitudes of G1(fr) and
G2(fr), however, may not be satisfied; thus, the phase error in
this case is given in general by Equations 5.152, 5.154, or
5.155, depending on the case. In the case of no quadratic
(nonlinear) error and only linear error, we have ε2 = 0. To
eliminate the linear error it is necessary to calibrate the phase
shifter using an asynchronous algorithm, as described, for
example, by Cheng and Wyant (1985).

The presence of linear phase error may be detected by
measuring a flat wavefront when a large linear carrier has
been introduced with tilt fringes. If a phase error occurs, a
sinusoidally corrugated wavefront will be detected with twice
the spatial frequency of the tilt fringes being introduced, as
shown in Figure 5.25.

The presence of phase-shifter error may also be detected
with a procedure suggested by Cheng and Wyant (1985). Tilt
fringes are introduced and measurements of the signal are



taken across the interferogram in a direction perpendicular
to the fringes. These measurements are then plotted to obtain
a sinusoidal curve. This plot is repeated N + 1 times, with
shift increments of 2π/N. The first and the (N + 1)th measure-
ments should overlap each other, unless phase error has
occurred, as shown in Figure 5.26.

Another interesting method to detect phase errors has
been proposed by Kinnstaetter et al. (1988). Two points in
quadrature (phase difference equal to 90°) are selected in the
fringe pattern, then the signal values at these two points are
plotted in a diagram for several values of the phase shift.
These diagrams are referred to as Lissajous displays, which
have the following characteristics (Figure 5.27):

1. For no phase errors and when the points being
selected have the same signal amplitude and are
exactly in quadrature, the diagram is a circle with
equidistant points.

(a) (b)

Figure 5.25 Detection of phase error by the presence of a
corrugated wavefront: (a) interferogram, and (b) wavefront.

Figure 5.26 Plots to detect phase error.
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2. For no phase error but when the interferogram points
being selected do not have the same signal amplitude
or are not in perfect quadrature, the diagram is an
ellipse.

3. If linear error is present, the ellipse or circle does not
close or leaves a gap open. In other words, the first
dot and the last are not at the same place in the
diagram.

4. For nonlinear error, the distance between the dots is
not constant.

5. For a nonlinear response or saturation in the light
detector, the ellipse is deformed, with some parts
having a different local curvature.

6. If there is vibrational noise, the curve is smaller and
irregular.

Alcalá-Ochoa and Huntley (1998) proposed a calibration
method in whˆich many measurements are taken with a series
of equidistant and close phase differences. The Fourier trans-
forms of the measurements are then calculated to obtain not
only the frequency of the signal but also its harmonic content.

Sometimes measurement of the phase difference between
any two interferograms with different phases is difficult
because of a large amount of noise. In this case, direct mea-
surement of the phase difference between two fixed interfero-
grams is possible if many tilt fringes are present, as described
by Wang et al. (1996).

Figure 5.27 Lissajous curves with different types of phase error.
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Another method to eliminate phase shift errors is to
directly measure the phase shift every time the phase is
shifted. Lai and Yatagai (1991) proposed an interferometer in
which the phase is measured in an extra calibration fringe
interference pattern with many tilt fringes. This auxiliary
interferogram is projected onto one side of the interferogram
to be measured using a high-precision tilted mirror.

A different approach was proposed by Huang and Yatagai
(1999), where the measurements are taken at unknown
phases with unknown steps. The number of steps is suffi-
ciently large so they can establish a linear system of equations
where sinφ, cosφ, and the signal bias appear as unknown
variables. The system is then solved with an iterative least-
squares fitting algorithm to find the optimum value for these
unknown variables.

5.9.3 Linear or Detuning Phase-Shift Error

In spite of all efforts to eliminate linear phase-shift errors,
they are frequently unavoidable. An ideal algorithm is one for
which the Fourier transform amplitudes of the reference sam-
pling functions as well as the orthogonality conditions are
preserved for all signal frequencies. In other words, Equation
5.92 should be true for all frequencies. This is not possible in
practical algorithms, so, to obtain at least a small frequency
range on which the sensitivity to detuning is small, we require
that

(5.162)

Thus, the Fourier transform amplitudes should be equal at
the reference frequency and should also be tangential to each
other at that point; that is,

(5.163)

with the same slope requirement for the phases, as follows:
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(5.164)

In some algorithms, the orthogonality condition holds for
all frequencies so only the condition in Equation 5.163 is
required. In other algorithms, the orthogonality condition
fails when f is different from fr, but the ratio between the two
magnitudes of the Fourier transforms is valid at all frequen-
cies. In this case, only the condition in Equation 5.164 is
necessary.

When the signal is not sinusoidal, the treatment of detun-
ing is more complicated, because any detuning affects not only
the fundamental frequency of the signal but also its harmonic
components, as will be described later. We explained before
that these phase errors are sinusoidally dependent on the
measured phase with twice the signal frequency. This fact was
used to design special detuning-insensitive algorithms. As
described in this book, special algorithms can be devised to
detect or reduce phase errors due to phase-shifter miscalibra-
tion and nonlinearity (Joenathan, 1994). Schwider (1989) also
used this sinusoidal variation of the phase error to calculate
an error function which is then subtracted from the calculated
phase values to substantially reduce the linear phase error.

5.9.4 Quadratic Phase-Shift Errors

Even when the linear error has been properly eliminated by
calibration of the phase shifter, quadratic error may still be
present. The phase error expression allows us to apply either
of the two previously described models. We can modify the
sampling point positions and calculate the Fourier transforms
of the reference sampling functions, or we can modify the
measured signal that has been phase modulated by the phase
error.

Let us now analyze the case of only linear and quadratic
error. To use the first model, it is convenient to express the
phase error in such a way that the quadratic error becomes
zero at the first sampling point (n = 1) and at the last sampling
point (n = N). Thus, we can write:
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(5.165)

The first term is a piston or phase-offset term of no practical
importance. We see that in this expression the quadratic error
is symmetric about the central point between the first and
last sampling points. Thus, the significant term for the qua-
dratic error can be written as:

(5.166)

which leads us to

(5.167)

Figure 5.28 illustrates a sample application of these concepts
for an algorithm with four sampling points in X. We can see
that this algorithm is insensitive to quadratic nonlinear phase
error. Other algorithms may be analyzed in a similar manner.

Figure 5.28 Effect of quadratic phase error in an algorithm.
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To apply the second model to analyzing this error, the
signal may be represented by:

(5.168)

where, for notational simplicity, the x,y dependence has been
omitted and the optical path difference (OPD) has been
replaced by z. Also, because no change in the signal period is
introduced by the compensated nonlinear error, no detuning
occurs and the reference frequency (fr) becomes equal to the
signal frequency (f).

In our examination of the Fourier theory of algorithms
in this chapter, we have assumed that the signal is periodic
so its Fourier transform is discrete. If we assume that the
phase value α is applied to each period of the signal, taking
the beginning of each period as the new origin, we obtain a
periodicity of the signal (Figure 5.29), and its Fourier trans-
form is discrete. This approach is valid only when the sam-
pling points are within one signal period, as is true for most
phase-detecting algorithms.

The Fourier coefficients in Equation 2.6 may then be
found using Equations 2.7 and 2.8. Unfortunately, evaluation
of these integrals is not simple and leads to Fresnel integrals,

Figure 5.29 Periodic distorted signal due to nonlinear phase error.
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as shown by Ai and Wyant (1987). Creath (1988) has per-
formed numerical simulations to gain insight into the nature
of this phase error (Figure 5.30).

5.9.5 High-Order, Nonlinear, Phase-Shift 
Errors with a Sinusoidal Signal

Let now study the most general case of nonlinearities up to
order p with a sinusoidal signal. As shown in Section 5.9.1,
the effective Fourier transforms, G′(f), of the sampling refer-
ence functions in the presence of nonlinear phase steps can
be found by substituting Equation 5.156 for the phase shift
in Equations 5.160 and 5.161:

(5.169)

and

(5.170)

Figure 5.30 Nonlinear phase error and some common phase-
detecting algorithms. (From Creath, K., in Progress in Optics, Vol.
XXVI, Wolf, E., Ed., Elsevier Science, Amsterdam, 1988. With
permission.)
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where N is the number of sampling points. Equation 5.169
can also be written as:

(5.171)

Assuming now that the phase error is much smaller than
π/2 we can approximate it by:

(5.172)

which is equal to:

(5.173)

where G1(f) is the Fourier transform in the absence of any
phase errors. Then, by taking the derivatives of G1(f) in Equa-
tion 5.90 with γ2(fr) = 0, it can be shown that this expression
can be transformed into:

(5.174)

where K is the maximum order of the nonlinear error. In a
similar manner, we can obtain from Equation 5.169:

(5.175)

Thus, if we impose the condition:

(5.176)

to eliminate all phase errors, we finally obtain:

(5.177)
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(which includes the conditions of equal magnitudes and
orthogonality) and

(5.178)

where k is the phase-shift deformation order present in the
system.

5.9.6 High-Order, Nonlinear, Phase-Shift 
Errors with a Distorted Signal

To study the detection of a harmonically distorted signal when
there is high-order nonlinear phase-shift error, we can use
Equations 5.75, 5.79, and 5.63, assuming an algorithm for
which γ2(fr) = 0, as is true in most cases, to obtain:

(5.179)

Ideally, all of the terms in the sum in the numerator and all
of the terms in the sum in the denominator must be zero;
however, if the signal has harmonic components above the
fundamental frequency, some of them will be different from
zero. Furthermore we will see that the value of these terms
depends not only on the amplitudes (Sm) of the harmonic
components but also on the phase-shift nonlinearities that
might be present.

As shown by Hibino (1997), the analysis is quite similar
to that given in Section 5.9.5 for the case of phase-shifting
nonlinearities affecting only the first term in the numerator
and the denominator of Equation 5.179. The effective Fourier
transforms, G′(mf), of the sampling reference functions in the
presence of nonlinear phase steps are given by:
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(5.180)

and

(5.181)

where N is the number of sampling points. Equation 5.180
can also be written as:

(5.182)

Assuming now that the phase error is much smaller than
π/2, we can approximate it by:

(5.183)

which is equal to:

(5.184)

where G(mf) is the Fourier transform for the harmonic com-
ponent (m) in the absence of any phase-shift errors. This
expression can now be transformed into:

(5.185)

where K is the maximum order of the nonlinear error. In a
similar manner, we can obtain from Equation 5.169:
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(5.186)

If the signal is sinusoidal (m = 1), we obtain the results
in the previous section. If signal harmonic components above
the fundamental frequency are present, in order to obtain
the sum terms in the numerator and all of the sum terms in
the denominator of Equation 5.181, we need to impose the
condition:

(5.187)

So, to eliminate phase error due to the presence of harmonic
components (m ≥ 2) and their associated nonlinear phase-
shifting errors, we finally obtain:

(5.188)

and

(5.189)

where k is the phase shift deformation order present in the
system, and m is the harmonic component above the funda-
mental also present.

In conclusion, the nonlinear phase-shift error of order k
is corrected in an algorithm only if the following two condi-
tions are satisfied:

1. The kth derivatives of the Fourier transforms of the
sampling reference functions at the reference fre-
quency are equal.

2. The kth derivatives of the Fourier transforms of the
sampling reference functions at the frequency of the
m ≥ 2 harmonic component present are zero.

We should remember that these Fourier transforms are com-
plex functions. If they are orthogonal to all frequencies, the
amplitudes of these functions should be equal to zero. Nonlin-
ear phase-shift errors in the presence of harmonic distortion

′ = + −

=

− −∑G mf G mf f i f
G mf

f
k

k

K

k n
k

r
k

k

k2 2
1

1

1 1 1( ) ( )
( )( ) ( ) ( )ε α d

d

′( ) = ′( ) = ≥G mf G mf mr r1 2 0 2, for

G mf G mfr r1 2 0( ) = ( ) =

d
d

d
d

k

k
f f

k

k
f f

G mf
f

G mf
f

r r

1 2 0
( ) ( )⎛

⎝⎜
⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

=
= =



have been studied by Hibino et al. (1995), who later applied
their results to design algorithms corrected for nonuniform
phase shifting (Hibino et al., 1997). In response to this work,
Surrel (1998) noted that these new algorithms are corrected
for nonuniform shifting but they have a large sensitivity to
random noise. Random noise is described later in this chapter.

5.9.7 Nonuniform Phase-Shifting Errors

Nonuniform phase shifting appears when a given applied phase
step is not the same real phase step at different points in the
interferogram. In other words, the applied phase steps are
spatially nonuniform. As reported by Hibino et al. (1997) and
by Hibino and Yamauchi (2000), this occurs in many practical
situations. An example is a liquid-crystal modulator, for which
the phase shift is nonlinear as well as nonuniform. Two other
examples are illustrated in Figure 5.35. Figure 5.35a shows a
Twyman–Green interferometer for which a large mirror is
driven with several (two or three) piezoelectric transducers.
Each one of them has different linear and nonlinear character-
istics. Figure 5.35b shows a Fizeau interferometer for which
the phase change is produced in a convergent beam by moving
a spherical mirror. The total phase shift on the axis is different
from the total phase shift close to the edge of the fringe pattern.

In the presence of nonuniform phase shifting, the signal
from different points in the interferogram will be different in
two ways:

1. The different linear calibrations of the phase dis-
placements will produce the effect of different signal
frequencies from different points.

2. The different nonlinear phase displacements will pro-
duce the effect of different phase modulation from
different points.

The nonuniform phase error appears when:

1. The nonlinear phase shift error of any order k is not
corrected.

2. The nonlinear phase shift error coefficient (εk) has
different values for each point in the interferogram.



Hibino (1999) and Hibino and Yamauchi (2000) designed
some algorithms to correct as much as possible for nonuniform
phase error and random noise. Some of these algorithms are
described in Chapter 6. Hibino et al. have shown that algo-
rithms with fewer than six samples have no error-compensat-
ing capability for phase nonlinearity. When the number of
samples reaches a value of eleven, a substantial reduction in
these errors is achieved.

Figure 5.35 Nonlinear phase shift error in (a) a Twyman–Green
interferometer, where the displacing mirror is driven by two or three
piezoelectric controllers; and (b) a Fizeau interferometer with a
moving spherical reference surface and convergent light beam.
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5.9.8 Phase Detection of a Harmonically 
Distorted Signal

A distorted periodic signal may be phase detected with a syn-
chronous detection sampling method without any error only if
the signal harmonic frequencies are located at places having a
zero value for the amplitudes of the Fourier transforms of the
reference functions. Many sampling algorithms, such as some
described in this chapter, have zeros of the reference functions
spectra at some harmonics. As shown in the preceding sections,
signal harmonics may appear for many reasons, for example:

1. When the signal is not sinusoidal, such as in the
measurement of aspherical wavefronts by means of
spatial phase-shifting analysis of interferograms

2. When the signal is sinusoidal but the phase-shifting
device has a nonlinear response in the phase scale,
such as in the case of temporal phase-shifting inter-
ferometry with a nonlinear phase shifter

3. When the signal is sinusoidal but the response of the
light detector is not linear with the signal

4. In multiple-beam interferograms, or Ronchigrams
(Hariharan, 1987)

We have shown before that, to make the algorithm insen-
sitive to the signal harmonic (m), we must have zeros of the
amplitudes of the Fourier transforms of the sampling refer-
ence functions for the harmonic (m) to which the algorithm
should be insensitive; however, this condition may not be
satisfied. Stetson and Brohinsky (1985), Hibino et al. (1995),
and Hibino (1997) have shown that to suppress all harmonics
up to the mth order in algorithms with equally spaced points
the following conditions are necessary:

1. The maximum phase spacing between sampling
points should be equal to 2π/(m + 2).

2. The minimum number of sampling points is m + 2
when the phase interval is set to its maximum value.
A smaller phase interval would require more sam-
pling points.



To clarify, let us assume that we have N equally spaced
sampling points with a phase separation equal to 2π/N. In
this case, all harmonic components up to the m = N – 2 order
will be eliminated. Of course, some other higher harmonics
may also be eliminated. Stetson and Brohinsky (1985) have
shown that an algorithm with equally and uniformly spaced
sampling points, as given in Equation 5.10, is sensitive to the
harmonics given by:

(5.190)

where p is an integer. These results are shown in Table 5.2.
If the phase-detecting algorithm is sensitive to undesired
harmonics, the response to these harmonics may be reduced
by additional filtering provided by bucket integration or with
an additional filtering function, as described in Section 5.7.

In order to provide insensitivity to a given harmonic
order in the presence of detuning, we must meet the following
two requirements regarding the Fourier transforms G1(f) and
G2(f) of the reference sampling functions:

1. Both Fourier transforms must have zero amplitude
at the harmonic frequency.

2. Both Fourier transforms must have a stationary
amplitude with respect to the frequency (zero slope)
at the harmonic frequency.

TABLE 5.2 Sensitivity to Signal Harmonics of Algorithms with 
Equally and Uniformly Spaced Points

Number of 
Sampling Points

Harmonics Being Suppressed

2 3 4 5 6 7 8 9 10 11

3 — y — — y — — y — —
4 y — y — y — y — y —
5 y y — y — y y — y —
6 y y y — y — y y y —

Source: From Stetson, K.A. and Brohinsky, W.R., Appl. Opt., 24, 3631–3637, 1985.
With permission.

m N pN= ± +1



Hibino et al. (1995) have shown that, to obtain an algo-
rithm that is insensitive up to the mth harmonic order and
is also insensitive to detuning of the fundamental frequency
and its harmonics, the following must be true:

1. The maximum phase interval between sampling
points must be equal to 2π/(m + 2).

2. The minimum number of sampling points must be
equal to 2m + 3 when the phase interval is set to its
maximum value. 

Surrel (1996) later showed, however, that the minimum num-
ber of sampling points should be equal to 2m + 2. A smaller
phase interval than its maximum value would require a
greater number of sampling points. An exception is when the
algorithm requires detuning insensitivity only at the funda-
mental frequency, in which case the phase interval may be
reduced from its maximum value of 120° to any smaller value,
without the need for more than five sampling points.

Given an unfiltered signal with harmonics, for which
the amplitude and phase are known, the phase error may
be calculated by means of the general expression with the
ratio of the correlations r(f) given by Equation 5.75, where
the only condition being satisfied is the zero bias. If we
assume that (1) the conditions for orthogonality and equal
amplitudes are fulfilled at the signal frequency, and (2) that
the algorithm has the relatively common property that the
orthogonality of the reference sampling functions is pre-
served at all signal frequencies, then we can write this
expression as:

(5.191)

Hence, using Equation 5.138 and 5.141 with γ2(fr), the phase
error may be shown to be given by:
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(5.192)

The values of the amplitudes (Sm) and of the phases (φm) of the
harmonic components of the signal depend on the signal char-
acteristics. The phase φm may be written as φm = mφ + βm. We
observe that the phase error does not change in a purely sinu-
soidal manner with the signal phase as do the other phase
errors considered previously. The functional dependence with
the signal phase φ is more complicated, but in a first approxi-
mation it has oscillations with the same frequency of the signal.

5.9.9 Light-Detector Nonlinearities

The light detector may have an electric output with a nonlin-
ear relationship with the signal, even though they are nor-
mally adjusted to work in its most linear region. If s′ is the
detector signal output and s is the input signal, we can write:

(5.193)

where ε is the nonlinear error coefficient. Thus, the output
from the detector is:

(5.194)

We can see that a second harmonic component appears in the
signal. If the value of the coefficient ε for this nonlinearity is
known, the compensation can be made; otherwise, a phase
error appears. As pointed out by Creath (1991), no error of this
nature is present for algorithms with four and five samples;
however, the three-sample algorithm and Carré’s algorithm
have noticeable errors with four times the fringe frequency.
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Some corrections can be made on the video camera after
the image has been digitized, but care must be taken to avoid
saturating the detector, which increases the harmonic con-
tent. Creath made numerical calculations of this phase error,
and Figure 5.31 shows the peak phase error as a function of
the phase, due to detector second-order nonlinearities, in some
common phase-detecting algorithms. The peak phase errors
for various amounts of nonlinear error due to detector second-
order nonlinearities for some common phase-detecting algo-
rithms are shown in Figure 5.32. Third-order detector non-
linearities may also appear. Figure 5.33 shows the peak phase
error as a function of the phase, due to detector third-order
nonlinearities, in some common phase-detecting algorithms.
Figure 5.34 shows the peak phase errors for various amounts
of nonlinear error due to detector third-order nonlinearities
for some common phase-detecting algorithms.

5.9.10 Random Phase Error

In a manner similar to that in Equation 5.141, by differenti-
ating tan φ and assuming that γ2(fr) = 0 as in most phase-
shifting algorithms, we obtain:

Figure 5.31 Phase error as a function of the phase, due to detector
second-order nonlinearities, for two common phase-detecting
algorithms. (From Creath, K., in Progress in Optics, Vol. XXVI, Wolf,
E., Ed., Elsevier Science, Amsterdam, 1988. With permission.)
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(5.195)

which can be approximated by:

Figure 5.32 Peak phase error as a function of the amount of
nonlinear error, due to detector second-order nonlinearities, for some
common phase-detecting algorithms. (From Creath, K., in Progress
in Optics, Vol. XXVI, Wolf, E., Ed., Elsevier Science, Amsterdam,
1988. With permission.)

Figure 5.33 Phase error as a function of the phase, due to detector
third-order nonlinearities, for some common phase-detecting
algorithms. (From Creath, K., in Progress in Optics, Vol. XXVI, Wolf,
E., Ed., Elsevier Science, Amsterdam, 1988. With permission.)
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(5.196)

If we now assume that this phase error is due to an error in
the measurement of the signal s(xn) we have:

(5.197)

We can now write Equation 5.108 as:

(5.198)

Hence, from the two expressions we can find:

Figure 5.34 Peak phase error as a function of the amount of
nonlinear error, due to detector third-order nonlinearities, for some
common phase-detecting algorithms. (From Creath, K., in Progress
in Optics, Vol. XXVI, Wolf, E., Ed., Elsevier Science, Amsterdam,
1988. With permission.)
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(5.199)

We can identify (N2 + D2) as the numerator in Equation 5.127;
thus, this equation is transformed into:

(5.200)

and then into:

(5.201)

where βn is given by:

(5.202)

This is the phase error due to an error in the signal sample
s(xn) being measured. We now assume that the signal errors
are uncorrelated between the samples and that the standard
deviation of all measurements is the same. Then, the statis-
tical phase error variance 〈Δφ2〉 can be expressed by:

(5.203)
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where 〈Δs(xn)2〉 is the statistical error variance of the signal.
The second term in the denominator becomes zero if γ2(fr) = 0.
If we neglect the phase dependence and average over all pos-
sible values of φ, the rms average δφ is given approximately by:

(5.204)

This result has been obtained by Hibino and Yamauchi (2000),
and an equivalent result was derived by Hibino (1997) and
Brophy (1990). The conclusion is that the susceptibility (R) of
a phase-shifting algorithm to random uncorrelated noise is
directly proportional to the root mean square of all of the
sampling weights. Hibino (1997) showed that the minimum
possible value of this rms value is given by:

(5.205)

This is the case for the diagonal least-squares algorithms
represented by Equation 5.19. Hibino (1997) also proved that
when an algorithm is designed to reduce systematic errors,
it becomes more susceptible to random errors.

5.10 SHIFTING ALGORITHMS WITH 
RESPECT TO THE PHASE ORIGIN

The sampling weights of an algorithm change if the sampling
points of an algorithm are shifted with respect to the origin
by the phase distance ε. This section studies how the sampling
weights change, thus modifying the algorithm structure.
Shifting an algorithm in this manner does not change its basic
properties with respect to immunity to harmonic components,
insensitivity to detuning, etc.; however, shifting an algorithm
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can change the symmetry properties of the sampling reference
functions. Thus, an algorithm that has equal magnitudes of
the Fourier transforms of the sampling reference functions at
all frequencies can be transformed by shifting it into one that
is orthogonal at all frequencies and vice versa.

To learn how to shift an algorithm, let us first consider
one in which the x origin (Ox) and the phase origin (Oα) are
at the same point, as in Figure 5.36a. Using Equations 5.62
and 5.63, the phase of the signal at the origin is then given by:

(5.206)

If the sampling points are shifted together with the sinusoidal
reference functions in the positive direction of x (Figure
5.36b), the reference sampling functions values are preserved
but their positions are shifted. Thus, the new shifted phase,
φ0 = φ + ε, at position x0 where ε = 2πfrx0, is now given by:

(5.207)

Figure 5.36 Shifting an algorithm.
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where ε > 0 and x0 > 0 if the sampling reference functions are
shifted in the positive direction.

The phase with respect to the nonshifted sinusoidal ref-
erence functions with these shifted sampling points (Figure
5.36c) can be obtained only if the values of the reference
sampling functions are properly modified by using the phase
equation:

(5.208)

Applying a well-known trigonometric relation, we see that

(5.209)

From Equations 5.207 to 5.209 we find:

(5.210)

Thus, we may write:

(5.211)
and

(5.212)

Hence, we may also write for the Fourier transforms of these
reference sampling functions:

(5.213)

and

(5.214)
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or, in terms of the amplitudes and phases:

(5.215)

and

(5.216)

The upper sign is used when γ1(fr) – γ2(fr) < 0. It is easy to show
that in the original algorithm γ2(fr) = 0 and γ1(fr) = π, and in

the shifted algorithm we also have  and .

5.10.1 Shifting the Algorithm by ±±±± ππππ/2

Of special interest is the case when the sampling points are
shifted a phase ε equal to ±π/2. In this case, we may see from
Equation 5.211 that

(5.217)

and from Equation 5.212:

(5.218)

where Xr = 1/fr. The plus or minus sign is used according to
Table 5.3.

In other words, we can say that, after shifting, the sam-
pling reference functions are just exchanged (with a change
in sign) for one and only one of these functions. We can also
write:

(5.219)
and

(5.220)
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with the new sampling points located at phases displaced ±π/2
with respect to those in the original algorithm. Figure 5.37
illustrates how the sampling points move for a shift of the
algorithm equal to π/2.

5.10.2 Shifting the Algorithm by ±±±±ππππ/4

This is another particular case of special interest. In this case,
from Equation 5.211 we can see that:

TABLE 5.3 Sign To Be Used in the Transformation 
Equations When Shifting an Algorithm

Relation between Phases
γ1(fr) and γ1(fr) Sign of Shift Sign To Be Used

γ1(fr) – γ2(fr) < 0 ε > 0 Upper
ε < 0 Lower

γ1(fr) – γ2(fr) > 0 ε > 0 Upper
ε < 0 Lower

Figure 5.37 Sampling point movement when shifting an algorithm
by π/2.
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(5.221)

and from Equation 5.212:

(5.222)

Thus, if we ignore the unimportant constant factor, we have:

(5.223)

and

(5.224)

where the signs are selected according to Table 5.3. We can
also write:

(5.225)
and

(5.226)

with the new sampling points located at phases displaced ±π/4
with respect to those in the original algorithm. Figure 5.38
illustrates how the sampling points move for a shift of the
algorithm equal to π/4.

Let us now compare the sensitivity to detuning of the
original and shifted algorithms. The Fourier transforms of
these sampling reference functions from Equations 5.215 and
5.216 are:
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and
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Let us now study two different particular cases of this algo-
rithm shifted by π/4. The first case is when the original reference
functions have the same amplitudes but are not orthogonal.
In this case, from Equations 5.227 and 5.228 we have:

(5.229)

and

(5.230)

which may be transformed into:

(5.231)

and

(5.232)

Figure 5.38 Sampling point movement when shifting an algorithm
by π/4.
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These values are for the upper signs. For the lower signs,
these values are interchanged. The important conclusion is
that these Fourier transforms are orthogonal, but their ampli-
tudes are not the same. The ratio of the amplitudes of these
Fourier transforms is given by:

(5.233)

The second case to study is when the original reference
sampling functions are orthogonal but their amplitudes are
not the same. From Equations 5.227 and 5.228 and by using
the orthogonality condition in Equation 5.79, we have:

(5.234)

and

(5.235)

Thus, the shifted algorithm in this case has the same ampli-
tudes, but it is not orthogonal.

A consequence of these last two results is that an algo-
rithm for which the reference sampling functions are orthog-
onal to all frequencies but their amplitudes are not equal at
all frequencies will convert, after shifting by π/4, to an algo-
rithm for which the sampling reference functions have equal
amplitudes at all frequencies but are orthogonal only at some
frequencies.

Let us now consider the detuning properties of the shifted
algorithm. Assuming detuning from the reference frequency
(fr) that shifts the phases γ1 and γ2, we can use Equation 5.232
to find:

(5.236)
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Then, if the detuning is relatively small, we can obtain:

(5.237)

If we examine Equations 5.152 we can see that the amplitude
of the detuning effect is the same for the original and the
shifted algorithms, so shifting the algorithm will not modify
its detuning sensitivity.

5.11 OPTIMIZATION OF PHASE-DETECTION 
ALGORITHMS

Given a number of sampling points and their phase positions,
an infinite number of sampling weight sets can define the
algorithm. In this chapter, we have developed some methods
to find algorithms with the desired properties but this was
done primarily to evaluate them. Another approach is to use
optimization techniques to find the optimum sampling
weights for some desired algorithm properties (Servín et al.,
1997). To simplify the analysis we assume that the sampling
reference functions g1(x) and g2(x) are antisymmetrical and
symmetrical, respectively. No loss in generality has occurred,
because, as described before, any algorithm can be shifted
without losing its properties until the symmetry conditions
are satisfied. Then, it is possible to show that the Fourier
transforms of the reference functions are given by:

(5.238)

and

(5.239)

with:

(5.240)
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where:

(5.241)

These symmetries ensure that the two sampling functions are
orthogonal at all signal frequencies. The sampling weight
values can now be found by minimizing the merit function
U(W1, W2, …, WN), defined by:

(5.242)

The first term minimizes the bias (DC) component of the
second sampling function. The bias of the second reference
function is zero due to its antisymmetry. The second term
minimizes the differences between the magnitudes of the sam-
pling reference functions at the reference frequency. The third
term minimizes the sensitivity of the algorithm to the second
signal harmonic. More terms may be added if insensitivity to
other signal harmonics is desired. The constants ρm are the
weights assigned to each term. The constants Δm are the half-
widths of the frequency intervals on which the optimizations
for each signal harmonic are desired.

The optimum values of the sampling weights (Wn) may
now be obtained by minimizing the merit function U(W1, W,
…, WN) for the parameters Wn by solving the linear system of
equations:

(5.243)

where the maximum value of n is N/2 if N is even or (N + 1)/2
if N is odd.
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When solving the linear system, analytical or numerical
integration may be used in the expression for the merit func-
tion. For practical convenience, numerical integration has
been preferred.

To optimize the algorithm, a minimum of four sampling
points is required. Servín et al. (1997) obtained optimized
algorithms with four, five, and seven sampling points. An
example of an algorithm designed using this method is pro-
vided in the next chapter.

5.12 INFLUENCE OF WINDOW FUNCTION 
OF SAMPLING ALGORITHMS

A signal that has harmonics that the signal algorithms cannot
eliminate can be reduced by a suitable additional filtering
function, sometimes called a window function, as described
by de Groot (1995) and Schmit and Creath (1996). Any algo-
rithm with reference sampling functions g1(x) and g2(x) may
be modified by means of the window function h(x). Then, the
new reference sampling functions  and  would be
given by:

(5.244)
and

(5.245)

With the convolution theorem, the Fourier transforms of these
functions are:

(5.246)
and

(5.247)

These new reference sampling functions must satisfy the con-
ditions of orthogonality and equal magnitudes at the reference
frequency; hence, we require:

(5.248)
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The zero bias condition must also be satisfied. Thus, from
Equations 5.106 and 5.107, we can write:

(5.249)

and

(5.250)

Any window function satisfying these conditions trans-
forms an algorithm into another with different properties. A
formal mathematical derivation of the general conditions
required by the window function is possible using these rela-
tions; nevertheless, we will restrict ourselves to the simple
particular case of an algorithm with sampling points in two
periods of the reference function, with an identical distribu-
tion on each of the two periods, so if the sampling function
for the basic one-period algorithm is gbi(x) then the sampling
function gi(x) for the two periods is:

(5.251)

A particular case of this kind of algorithm is when the points
are equally spaced in the two periods and the number of points
is even. Thus, its Fourier transform is:

(5.252)

It is relatively simple to prove either mathematically or graph-
ically that any window function that satisfies the condition:

(5.253)

preserves the magnitude and phase of the Fourier transforms
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as well as the zero bias. Figure 5.39 illustrates a particular
case of these functions. This window function, then, can be
expressed by a Fourier series as:

(5.254)

where m is an odd integer. The Fourier transform of this filter
function thus becomes:

(5.255)

Using the merit function defined in the preceding section, the
best value for these Am coefficients can be calculated.

Schmit and Creath (1996) described in some detail tri-
angular and bell functions, which can be considered particular

Figure 5.39 Reference sampling functions and window function
when two periods of the signal are sampled.
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cases of the one described here. Improved algorithms are
obtained if these window functions are applied to the eight-
sampling-point diagonal least-squares algorithms, with an
even number of points. These window functions, shown in
Figure 5.40, improve the characteristics of the algorithm.

Schmit and Creath proved that the triangular window
produces the same effect as the multiple sequential technique,
while the bell window produces the same effect as the multiple
averaging technique. de Groot (1995) also studied the effect
of a window function, using an approach more similar to the
filtering function studied earlier.

5.13 CONCLUSIONS

In this chapter, we have established the foundations for the
analysis of phase-detection algorithms. This theory permits
us to analyze the properties of any algorithm and even allows
us to design better ones.

Figure 5.40 Triangular and bell window functions (described by
Schmit and Creath) for an eight-sampling-point, diagonal least-
squares algorithm.
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APPENDIX. DERIVATIVE OF THE AMPLITUDE 
OF THE FOURIER TRANSFORM OF THE 
REFERENCE SAMPLING FUNCTIONS

The derivative of the Fourier transform of the sampling func-
tions is frequently needed. In this appendix, we derive the
expression for this derivative. Equation 5.54 may be written
as:

(A.1)

where X(f) is the real part and Y(f) is the imaginary part.
Taking the derivative of this expression with respect to f we
find:

(A.2)

which can be transformed into:

(A.3)

Because the left-hand side of this expression is real, the right-
hand side must also be real. Thus, we obtain:

(A.4)

To apply this expression to an algorithm with N sampling
points, we now use Equations 5.74 and 5.75 in this expression,
with ψ(fr) = 0:
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(A.5)

Thus, this derivative at the signal harmonic k (including the
signal frequency, fr, with k = 1) becomes:

(A.6)
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6

Phase-Detection Algorithms

6.1 GENERAL PROPERTIES OF SYNCHRONOUS 
PHASE-DETECTION ALGORITHMS

Various phase-measuring algorithms have been reviewed by
many authors (e.g., Schwider et al., 1983; Creath, 1986, 1991).
In this chapter, we describe several of the phase-detection
algorithms, each of which has different properties, and we
apply the Fourier theory developed in Chapter 5 to the anal-
ysis of some of these phase-detection schemes.

Because we have three unknowns in Equation 1.4 (i.e.,
a, b, and φΔ), we need a minimum of three signal measure-
ments to determine the phase φ. The measurements can have
any phase, as long as they are known. We can assume that
the first measurement is at phase α1, the second at α2, the
third at α3, and so on. Here, the zero-value position for these
phases (αn) will be considered to be at the origin of coordi-
nates, thus making ψ(fr) = 0. In this case, the Fourier trans-
forms of the sampling functions (from Equations 5.90 and
5.91) are:

(6.1)
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(6.2)

where the phase shift (αn) is measured with respect to the
reference frequency.

A sampling phase-detecting algorithm is defined by the
number of sampling points, their phase positions, and their
associated sampling weights. The minimum number of sam-
pling points is three. In this case, their positions automati-
cally define the values of the sampling weights. When the
number of sampling points is greater than three, the phase
positions of the sampling points do not completely define the
algorithm, as an infinite number of sampling weight sets
satisfies the conditions studied in Chapter 5; however, only
one of these possible solutions is a least-squares fit.

In Chapter 5 we found that, in the presence of detuning,
the conditions requiring equal magnitudes or orthogonality
of the Fourier transforms of the sampling points, or both, are
lost. Given a number of sampling points, these properties are
defined by the phase locations of the sampling points.

If we consider only nonzero sampling weights, we can
show that:

1. If g1(f) is symmetric and g2(f) is antisymmetric, or
vice versa, about the same phase point, then the two
functions are orthogonal at all frequencies.

2. If g1(f) and g2(f) are equal and only one is shifted with
respect to the other (for example, if both are symmet-
ric or antisymmetric about different points separated
by 90°), then they will have the same magnitudes at
all frequencies.

6.2 THREE-STEP ALGORITHMS 
TO MEASURE THE PHASE

We have seen before that, to determine the phase without any
ambiguity, a minimum of three sampling points is necessary.
Let us now consider the case of three sampling points with
any phases α1, α2, and α3. Hence, we can write:
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(6.3)

where the x,y dependence is implicit. These expressions can
also be written as:

(6.4)

Hence, we can find:

(6.5)

This is a general expression for three-point sampling algo-
rithms. Let us now consider some particular cases.

6.2.1 120° Three-Step Algorithm

A particular case of the three-step method is to take α1 = 60°,
α2 = 180°, and α3 = 300°, as shown in Figure 6.1. Thus, we
obtain the following result for the phase:

(6.6)

From this expression (by comparing with Equation 5.108), we
can see that the reference sampling weights have the values

W11 = , W12 = 0, W13 = , W21 = 1/2, W22 = –1, and
W23 = 1/2. Thus, the reference sampling functions (Figure 6.1)
are:
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(6.7)

and

(6.8)

Because these three sampling points are equally spaced and
uniformly distributed along the reference function period, as
described by Equation 5.19, the values of W1n are equal to
sin(2πfrxn) and the values of W2n are equal to cos(2πfrxn). Thus,
this is a diagonal least-squares algorithm, and Equation 5.19
for the phase is valid. It can easily be shown that Equation
5.19 reduces to Equation 6.4 for these sampling points.

The sampling weights represented in a polar diagram
are shown on the left side of Figure 6.1. We can see that the
sampling vectors G1 and G2 are perpendicular to each other.
We can also see on the right side of this figure that the sum
of all sampling weights W1n and similarly the sum of all
sampling weights W2n are equal to zero, as the functions gi(x)
have no DC term.

The Fourier transforms of the sampling functions, using
Equations 5.90 and 5.91, are:

Figure 6.1 A 120° three-step algorithm to measure the phase.
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(6.9)

and

(6.10)

The amplitudes of these functions are plotted in Figure
6.2. Observing Equations 6.9 and 6.10, we see that these two
functions are orthogonal at all frequencies. The normalized
frequency is defined as the ratio of the frequency f to the
reference frequency fr. With a detuning, the condition for
equal magnitudes is lost. It must be pointed out here that a
phase π has been added, if necessary, to all expressions for
the Fourier transforms G1(f) and G2(f) in this chapter, in order
to change their sign and make their amplitudes positive at
the reference frequency fr. The phases as functions of the
normalized frequency are linear and are orthogonal for all
frequencies as illustrated in Figure 6.3.

Figure 6.2 Amplitudes of the Fourier transforms of sampling
functions for the 120° three-step algorithm.
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Given a reference frequency (fr), the value of r(f) is a
function of the signal phase and the signal frequency and is
expressed by Equation 5.77. The value of r(f) is thus given by:

(6.11)

If both the reference and signal frequencies are known,
the phase can be obtained when the value of r(f) has been
determined. If f = fr, this expression reduces to Equation 5.47.
From Figure 6.2 we can see that this algorithm has the fol-
lowing properties:

1. It is sensitive to detuning error, as shown in Figure
6.3, as the magnitudes of the Fourier transforms of
the sampling functions are altered by small detun-
ings. The phase error as a function of the normalized
frequency is shown in Figure 6.4.

Figure 6.3 Sampling function phases for the 120° three-step
algorithm.
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2. Signals with frequencies fr, 2fr, 4fr, 5fr, 7fr, etc. can
be detected, as the amplitudes of the Fourier trans-
forms are the same (even if of different sign) at these
frequencies.

3. Phase errors can be introduced by the presence in
the signal of second, fourth, fifth, seventh, and eight
harmonics; however, it is insensitive to third, sixth,
and ninth harmonics.

As expected, the phase error is also a function of the signal
phase and has an almost sinusoidal shape, as shown in Figure
6.5.

Figure 6.4 Detuning error for the 120° three-step algorithm.

Figure 6.5 Periodic phase error as a function of the signal phase
for the 120° three-step algorithm. This is for a normalized frequency
equal to 1.2.
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6.2.2 Inverted T Three-Step Algorithm

Another particular case of the three-step method is when we
use α1 = 0°, α2 = 90°, and α3 = 180°, as shown in Figure 6.6.
In this case, we obtain the following result for the phase:

(6.12)

These three points are equally but not uniformly spaced along
the reference sampling function period. As a consequence, the
sampling weights W1n and W2n are not equal to the functions
sin(2πfrαn) and cos(2πfrαn), respectively, as in the case of uni-
formly spaced sampling points.

The sampling weights have the values W11 = –1, W12 = 2,
W13 = –1, W21 = 1, W22 = 0, and W23 = –1. Thus, the reference
sampling functions are:

(6.13)

and

(6.14)

and the Fourier transforms of the sampling functions become:

(6.15)

and

(6.16)

We can see that these functions are orthogonal at all frequen-
cies and that their magnitudes are equal only at the reference
frequency (fr) and all of its harmonics. Their amplitudes are
shown in Figure 6.7. The value of r(f), from Equation 5.77, is:
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(6.17)

which, as expected, for f = fr, becomes Equation 5.81.

Figure 6.6 A three-step inverted T algorithm to measure the phase.

Figure 6.7 Amplitudes of the Fourier transforms of sampling
functions for the three-step inverted T algorithm.
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From Figure 6.7 we can see that this algorithm has the
following properties:

1. It is quite sensitive to detuning error, as the magni-
tudes of the Fourier transforms of the sampling func-
tions become very different after small detunings.

2. Signals with frequencies fr, 3fr, 5fr, 7fr, 9fr, etc. can
be detected, as the amplitudes of the Fourier trans-
forms are the same (even if of different sign) at these
frequencies.

3. Phase errors can be introduced by the presence in
the signal of second, third, fifth, sixth, seventh, and
ninth harmonics; however, it is insensitive to fourth
and eighth harmonics.

6.2.3 Wyant’s Tilted T Three-Step Algorithm

A particularly interesting version of a three-step algorithm
was proposed by Wyant et al. (1984) and later by Bhushan et
al. (1985). In this case, the expression for the phase is quite
simple. The three sampling points are separated by 90°, as
in the former algorithm, but with an offset of 45° (i.e., the
first sampling point is taken at –45° with respect to the
origin). It is interesting to note that a change in this offset
changes the values of the sampling weights. These authors
used α1 = –45°, α2 = 45°, and α3 = 135°, as shown in Figure
6.8. Thus, we obtain the following result for the phase:

(6.18)

The sampling weights have the following values: W11 = –1,
W12 = 1, W13 = 0, W21 = 0, W22 = 1, and W23 = –1. The reference
sampling functions are:
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and

(6.20)
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Thus, the Fourier transform amplitudes of the sampling func-
tions, as illustrated in Figure 6.9, are:

(6.21)

and

(6.22)

These functions have the same amplitudes at all frequencies 
so their graphs superimpose one over the other. They are 
orthogonal only at the reference frequency (fr) and at its odd 
harmonics, as shown in Figure 6.10. From Equation 5.77, the 
coefficient r(f) is given by:

(6.23)

which can be used to find the phase in the presence of detun-
ing, if the magnitude of this detuning is known.

Figure 6.8 Wyant’s three-step algorithm.
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From Figure 6.10 we can see that this algorithm has the 
following properties:

1. It is quite sensitive to detuning error, as the orthog-
onality of the Fourier transforms of the sampling
functions is lost after small detunings. The phase
error is illustrated in Figure 6.11.

2. Just as in the preceding algorithm, signals with fre-
quencies fr, 2fr, 4fr, 5fr, 7fr, etc. can be detected, as
the amplitudes of the Fourier transforms are the
same (even if of different sign) at these frequencies.

3. Also as in the preceding algorithm, phase errors can
be introduced by the presence in the signal of second,
third, fifth, sixth, seventh, and ninth harmonics, and
it is also insensitive to fourth and eighth harmonics.

6.2.4 Two-Steps-Plus-One Algorithm

If the constant term or bias is removed from the signal mea-
surements, the phase can be determined using only two sam-
pling points having a phase difference of 90°. The tangent of

Figure 6.9 Amplitudes of Fourier transforms for reference
sampling functions in Wyant’s three-step algorithm.
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the phase is simply the ratio of the two measurements. Men-
doza-Santoyo et al. (1988) determined the phase using this
principle. This principle has also been applied to an interest-
ing three-step method (Figure 6.12) suitable for systems with
vibrations, such as in the testing of large astronomical mirrors
(Angel and Wizinowich, 1988). The phase of one of the beams
is rapidly switched between two values, separated by 90°. This

Figure 6.10 Phases for the reference sampling functions in
Wyant’s three-step algorithm.

Figure 6.11 Phase error as a function of the normalized frequency
for Wyant’s three-step algorithm.
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is done quickly enough to reduce the effects of vibration.
Further readings are taken any time later to obtain the sum
of the irradiance of the beams, independent of their relative
phase. These later readings to find the irradiance sum can be
performed in any of several possible ways, one of which is to
take two readings separated by 180°. An alternative way is
to use an integrating interval of Δ = 360°. The Fourier analysis
of this algorithm thus depends on the approach used to find
this irradiance. Here, we consider the second method of inte-
grating the signal in a period. Thus, we can write:

(6.24)

where x = (Xr/2π)φ, which gives us the following for the phase:

Figure 6.12 Sampling functions in the three-step (2 + 1) algorithm.
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(6.25)

The reference sampling functions are:

(6.26)

and

(6.27)

with

(6.28)

Thus, the Fourier transforms of these sampling functions, as
shown in Figure 6.13, are:

Figure 6.13 Amplitudes of Fourier transforms for reference
sampling functions for the three-step (2 + 1) algorithm.
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(6.29)

and

(6.30)

We can easily see that these two Fourier transforms are
orthogonal to each other and have the same amplitude at the
signal frequency and all of its harmonics. In other words, this
algorithm is not insensitive to any of the signal harmonics.
It is also sensitive to detuning. The value of r(f), from Equation
5.77, is given by:

(6.31)

6.3 FOUR-STEP ALGORITHMS 
TO MEASURE THE PHASE

In principle, three steps are enough to determine the three
unknown constants; however, small measurement errors can
have a large effect in the results. Four-step methods can offer
better results in this respect. With four steps, as noted earlier
in this chapter, the sampling point distribution has an infinite
number of solutions for the phase, and some of them are
diagonal least-squares algorithm solutions.
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6.3.1 Four Steps in the Cross Algorithm

The values of the irradiance are measured using four different
values of the phase: α1 = 0°, α2 = 90°, α3 =180°, and α4 = 270°.
Thus, as shown in Figure 6.14, we have:

(6.32)

From these expressions, one possible solution for the phase is:

(6.33)

The sampling weights have the values W11 = 0, W12 = 1, W13

= 0, W14 = –1, W21 = 1, W22 = 0, W23 = –1, and W24 = 0. We can
see in Figure 6.14 that these sampling weights are described
by Equation 5.19. Hence, this is a diagonal least-squares
solution, with a diagonal system matrix. The reference sam-
pling functions are:

Figure 6.14 Four-step cross algorithm.

g2

g1

1

2

3

W12

W13

W22

W23

3 1

sin (2πfrx)

cos (2πfrx)

W11

W14

W21

W24

4

4

2

x

x

G14G12

G21

G23

s a b

s a b

s a b

s a b

1

2

3

4

90

180

270

= +

= + + °

= + + °

= + + °

cos

cos( )

cos( )

cos( )

φ

φ

φ

φ

tanφ = − −
−

s s
s s

2 4

1 3



(6.34)

and

(6.35)

Thus, the Fourier transforms of the sampling functions (Fig-
ure 6.15) are:

(6.36)

and

(6.37)

The amplitudes of these functions are the same at all frequen-
cies and are orthogonal at the reference frequency (fr) and all

Figure 6.15 Amplitudes of Fourier transforms for reference
sampling functions for the four-step cross algorithm.
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its odd harmonics, as shown in Figure 6.16. Using Equation
5.77, the value of r(f) is given by:

(6.38)

From Figure 6.15 we can see that this algorithm has the
following properties:

1. It is quite sensitive to detuning error, because, as in
Wyant’s algorithm, the orthogonality of the Fourier
transforms of the sampling functions is lost due to
small detuning. The phase error as a function of the
normalized frequency is shown in Figure 6.17 and as
a function of the signal phase in Figure 6.18.

2. Phase errors can be introduced by the presence in
the signal of all odd harmonics; however, it is insen-
sitive to all even harmonics.

Figure 6.16 Phases for the reference sampling functions for the
four-step cross algorithm.
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6.3.2 Algorithm for Four Steps in X

The values of the irradiance are measured at four different
values of the phase: α1 = 45°, α2 = 135°, α3 = 225°, and α4 =
315°. Thus, as shown in Figure 6.19, we have:

(6.39)

Figure 6.17 Phase error as a function of the normalized frequency
for reference sampling functions in the four-step cross algorithm.

Figure 6.18 Phase error as a function of the signal frequency of the
four-steps cross algorithm. The normalized frequency is equal to 1.2.
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From these equations, we can show that one solution for the
phase is:

(6.40)

The sampling weights have the following values: W11 = 1,
W12 = 1, W13 = –1, W14 = –1, W21 = 1, W22 = –1, W23 = –1, and
W24 = 1. As in the preceding algorithm, we can see that these
sampling weights are as described by Equation 5.19, thus
this is another diagonal least-squares solution. The reference
sampling functions, then, are:

(6.41)

and

(6.42)

Figure 6.19 Four-step X algorithm.
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The Fourier transforms of the sampling functions (Figure 6.20)
are:

(6.43)

and

(6.44)

These functions are orthogonal at all frequencies and have
the same amplitude only at the reference frequency (fr) and
all of its odd harmonics. From Equation 5.75, the value of r(f)
can be shown to be given by:

(6.45)

Thus, any detuning can be compensated, if the signal fre-
quency is known, by dividing the calculated value of r(f) by
tan(πf/4fr).

Figure 6.20 Amplitudes of Fourier transforms for reference
sampling functions for the four-step X algorithm.
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From Figure 6.20 we can see that this algorithm has the
following properties:

1. It is quite sensitive to detuning error, as the ampli-
tude of the Fourier transforms of the sampling func-
tions are altered by small detunings.

2. Signals with frequencies fr, 3fr, 5fr, 7fr, 9fr, etc. can
be detected, as the amplitudes of the Fourier trans-
forms are the same (even if of different sign) at these
frequencies.

3. As in the preceding algorithm, phase errors can be
introduced by the presence in the signal of all odd
harmonics; also, it is insensitive to all even harmonics.

6.4 FIVE-STEP ALGORITHM

In this algorithm, the values of the irradiance are measured
at five different values of the phase: α1 = 36°, α2 = 108°, α3 =
180°, α4 = 252°, and α5 = 324°. Thus, as shown in Figure 6.21,
we have:

Figure 6.21 Five-step algorithm.
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(6.46)

Then, the diagonal least-squares solution is:

(6.47)

Thus, the reference sampling functions are:

(6.48)

and

(6.49)

The Fourier transforms of the sampling functions (Figure
6.22) are:

(6.50)
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and

(6.51)

These functions are orthogonal at all frequencies and have
the same amplitude only at the reference frequency (fr) and
at the sixth harmonic. From Equation 5.77, we can see that
the value of r(f) is given by:

(6.52)

From Figure 6.22 we can see that this algorithm has the
following properties:

Figure 6.22 Amplitudes of the Fourier transforms for reference
sampling functions of the five-step algorithm.
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1. It is quite sensitive to detuning error, as the magni-
tudes of the Fourier transforms of the sampling func-
tions are altered by small detunings. The phase error
as a function of the normalized frequency is shown
in Figure 6.23.

2. Signals with frequencies fr, 4fr, 6fr, 9fr, etc. can be
detected, as the amplitudes of the Fourier transforms
are the same (even if of different sign) at these fre-
quencies.

3. Phase errors can be introduced by the presence in the
signal of fourth, sixth, and ninth harmonics. The sig-
nal is insensitive to the second, third, fifth, seventh,
eighth, and tenth harmonics.

6.5 ALGORITHMS WITH SYMMETRICAL 
N + 1 PHASE STEPS

We have seen in Chapter 5 that any phase-detection algorithm
must satisfy the condition that the reference sampling vectors
G1 and G2 must be orthogonal to each other and must have
the same magnitude. Also, the sums of their x and y compo-
nents must be zero, as expressed by Equations 5.96 and 5.97.
We have also seen in Chapter 5 that when we have N sampling
points, equally and uniformly spaced, as described by:

Figure 6.23 Phase error as a function of the normalized frequency
for the five-step algorithm.
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(6.53)

then these conditions are satisfied if the sampling weights
are given by:

(6.54)
and

(6.55)

where αn = 2πfrxn. Then, the signal phase becomes:

(6.56)

This expression is valid for all algorithms with N sampling
points equally and uniformly spaced according to Equation
6.47. The first sampling point (n = 1) is located at a coordinate
xn = 0, and the last point is located at xN = (N – 1)/Nfr. A point
with n = N + 1 (which is not considered) would be located at
xn = Xr = 1/fr (that is, at a phase equal to 2π).

Let us now consider algorithms with N + 1 sampling points
with the same separation as described earlier, such that the
last point has a phase equal to 2π. This modification removes
the orthogonality and equal magnitudes that are required from
the reference sampling weights, but these conditions can be
restored simply by splitting in half the magnitude of the first
(n = 1) sampling weight (W21) and setting the last (n = N + 1)
sampling weight (W2(N+1)) equal to this value. Thus, the modified
sampling weights W21 and W2(N+1) have the same value:

(6.57)

and all other sampling weights remain the same. These algo-
rithms, first described by Larkin and Oreb (1992), are called
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symmetrical N + 1 sampling algorithms and have some inter-
esting error-compensating properties.

The Fourier transforms of these reference sampling func-
tions with N + 1 sampling points, from Equations 6.1 and 6.2,
are given by:

(6.58)

With the sampling point distribution just described for these
algorithms, its Fourier transforms become, after adding
together terms symmetrically placed in the sampling interval,

(6.59)

for N odd, with no sampling point at the middle central posi-
tion of the sampling interval as the total number of points (N
+ 1) is even; or

(6.60)

for N even. Because the total number of sampling points is
odd, there is a point at the middle. The weights defined by
Equations 6.54 and 6.55 are antisymmetrical, while the terms
defined by Equation 6.57 are symmetrical. Then, we can show
that G1(f) is given by:

(6.61)
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(6.62)

for N even. The last term has disappeared, as the weight
(W1(N/2+1)) is equal to zero. In the same manner, G2(f) is given
by:

(6.63)

for N odd, and

(6.64)

for N even.
From Equations 6.54, 6.55, and 6.57 and because ψ(fr) is

zero, the sampling weights, using the sampling point distri-
bution in Equation 6.52, are:

(6.65)

for all values of n,

(6.66)

for 1 < n < N + 1, and

(6.67)

for n = 1 and n = N + 1.
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We can see that, due to their symmetry, these two func-
tions are orthogonal at all frequencies. This is an important
result, because we can conclude that, with detuning, the only
condition that can fail is that requiring equal amplitudes of
the Fourier transforms of the sampling functions.

The only requirement, then, for insensitivity to detuning,
as studied in Chapter 5, is that the amplitude of the Fourier
transforms must remain the same in a small frequency inter-
val centered at fr. As described in Chapter 4, this occurs when
the two plots for G1(f) and G2(f) touch tangentially at the
frequency fr.

An important property of these symmetrical N + 1 algo-
rithms is that they can be made insensitive to low-frequency
detuning. The requirement that the slopes for G1(f) and G2(f)
are equal, so that they touch tangentially, is satisfied in some
of these algorithms (for some values of N) but not for all of
them. When this happens, the algorithm can still be modified
to obtain insensitivity to detuning.

Let us assume, as described by Larkin and Oreb (1992),
that an additional term, ΔG1(f), is added to the function G1(f),
with the following conditions:

1. Its phase is equal to that of G1(f), so the orthogonality
condition is not disturbed at any frequency.

2. Its amplitude at the frequency fr is zero, so the con-
dition of equal amplitudes is not disturbed at this
frequency.

3. The sum of its sampling weights should be zero, so
the condition for no DC bias is met.

4. Its amplitude is zero at the harmonics of the fre-
quency fr, so the absence of harmonics cross-talk is
not altered by the presence of this extra term.

5. Its slope at the frequency fr is not zero, so the final
slope of the Fourier transform G1(f) can be changed
as needed to make the algorithm insensitive to small
detuning.

The sampling weights W11 and W1(N+1) have a zero value.
Let us assume that the sampling weights for the additional
term ΔG1(f) are given nonzero values with the same amplitudes



but with opposite signs at these locations, as shown in Figure
6.24. The necessary conditions are satisfied, and the slope of
the amplitude of the Fourier transform G1(f) at the signal
frequency can be modified. Thus, we see that ΔG1(f), as plotted
in Figure 6.25, is:

(6.68)

where W11 = –W1(N+1) is set to a value so that the two desired
slopes become equal.

Figure 6.24 Sampling weights for the extra term ΔG1(f).

Figure 6.25 Amplitude of the Fourier transforms for the extra
term ΔG1(f).
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We will apply this extra term to some symmetrical algo-
rithms, later in this chapter, to make them insensitive to
detuning. Surrel (1993) developed symmetrical detuning-
insensitive algorithms and showed that the sampling weights
W11 and W1(N+1) must have the value:

(6.69)

6.5.1 Symmetrical Four-Step (3 + 1) Algorithm

For this algorithm, with N = 3, as illustrated in Figure 6.26,
the four signal measurements are written as follows:

(6.70)

Figure 6.26 Symmetrical four-step (3 + 1) algorithm.
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The first and last points have the same phase; thus, we can
take the average of these points in order to reduce the number
of equations to three. Then, from these equations we find:

(6.71)

It is interesting to note that this expression can be obtained
from a three-point algorithm, such as the 120° three-step
algorithm, with the first sampling point at zero degrees if s1

is replaced by (s1 + s4)/2.
The sampling weights are W11 = 0, W12 = , W13 = ,

W21 = 0.5, W22 = –0.5, W23 = –0.5, and W24 = 0.5. Then, the
reference sampling functions are:

(6.72)

and

(6.73)

The Fourier transforms of these sampling functions, plotted
in Figure 6.27, are:

(6.74)

and

(6.75)

The value of r(f), from Equation 5.77, is given by:

(6.76)
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These Fourier transforms are orthogonal at all frequen-
cies. We can see that the two curves do not touch each other
tangentially at the reference frequency (fr). In order to have
detuning insensitivity, to the function G1(f) we must add the
additional term ΔG1(f), with the proper amplitude σ. Then, the
value of W11 that makes the slope of ΔG1(f) equal to minus this

value is equal to W11 = . The sampling weights for the

final algorithm are shown in Figure 6.28.
The plots of the amplitudes of the Fourier transforms are

shown in Figure 6.29, where we can see that this algorithm
has the following properties:

1. It is insensitive to small detuning errors, as the two
plots for the Fourier transform magnitudes touch
each other tangentially at the reference frequency.

2. Signals with frequencies fr, 2fr, 4fr, 5fr, 7fr, etc. can
be detected, as the amplitudes of the Fourier trans-
forms are the same (even if of different sign) at these
frequencies.

Figure 6.27 Amplitudes of the Fourier transforms for reference
sampling functions for the symmetrical four-step (3 + 1) algorithm.
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3. Phase errors can be introduced by the presence in
the signal of second, fourth, fifth, seventh, and eighth
harmonics. It is insensitive to third, sixth, and ninth
harmonics.

Figure 6.28 Symmetrical four-step (3 + 1) algorithm with an extra
term to obtain detuning insensitivity.

Figure 6.29 Amplitudes of the Fourier transforms for reference
sampling functions for the symmetrical four-step (3 + 1) algorithm
with an extra term.
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6.5.2 Schwider–Hariharan Five-Step 
(4 + 1) Algorithm

This algorithm was described by Schwider et al. (1983) and
later by Hariharan et al. (1987). The irradiance measure-
ments for the five sampling points are:

(6.77)

From these equations, the phase can be obtained as follows:

(6.78)

This expression can be obtained from the four steps of the
nπ/2 algorithm by substituting the measurement s1 with the
average of the measurements s1 and s5. The sampling weights,
as shown in Figure 6.30, have the values W11 = 0, W12 = 1,
W13 = 0, W14 = –1, W15 = 0, W21 = 1/2, W22 = 0, W23 = –1, W24

= 0, and W25 = 1/2. Then, the reference sampling functions are:

(6.79)

and

(6.80)

The amplitudes of the Fourier transforms of the sampling
functions, shown in Figure 6.31, are:
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Figure 6.30 Schwider–Hariharan symmetrical five-step (4 + 1)
algorithm.

Figure 6.31 Amplitudes of the Fourier transforms for reference
sampling functions for the symmetrical five-step (4 + 1) algorithm.
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(6.81)

and

(6.82)

As illustrated in Figure 6.32, these functions are orthogonal
at all frequencies and their amplitudes are equal only at the
reference frequency (fr) and at its odd harmonics.

The amplitudes of these two functions become equal at
values of the frequency signal equal to fr, 5fr, 9fr, etc. At these
points, the curves for the two Fourier transforms touch each
other tangentially, thus making the algorithm insensitive to
low-frequency detuning. Using Equation 5.77, the value of r(f)
is given by:

(6.83)

From Figure 6.31 we can see that this algorithm has the
following properties:

1. It is insensitive to small detuning errors, as the two
plots for the Fourier transform magnitude touch each
other tangentially at the reference frequency. The
phase error as a function of the normalized frequency
is illustrated in Figures 6.33 and 6.34.

2. Signals with frequencies fr, 3fr, 5fr, 7fr, 9fr, etc. can
be detected, as the amplitudes of the Fourier trans-
forms are the same (even if of different sign) at these
frequencies.

3. Phase errors can be introduced by the presence of
odd harmonics in the signal, but it is insensitive to
even harmonics.
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Hariharan et al. (1987) derived this algorithm by assum-
ing that the phase separation between the five sampling
points was not known and algebraically represented it by α
in Equation 6.70. In this case, the value of α is found by
equating to zero the derivative of tan(φ0) with respect to angle
α; thus, angle α equal to 90° is found. In this algorithm, a
symmetrical sampling point distribution from –π to π is used.

Figure 6.32 Phases for the sampling functions in the Schwider–
Hariharan symmetrical five-step (4 + 1) algorithm.

Figure 6.33 Phase error as a function of the normalized frequency
for the Schwider–Hariharan symmetrical five-step (4 + 1) algorithm.
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6.5.3 Symmetrical Six-Step (5 + 1) Algorithm

In this algorithm, the irradiance measurements for the six
sampling points, as illustrated in Figure 6.35, are:

(6.84)

From these equations, the phase can be shown to be:

(6.85)

The reference sampling functions are:

Figure 6.34 Phase error as a function of the signal phase for the
Schwider–Hariharan symmetrical five-step (4 + 1) algorithm. The
normalized frequency is equal to 1.4.
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(6.86)

and

(6.87)

The Fourier transforms of the sampling functions (Figure
6.36) are:

(6.88)

and

Figure 6.35 Symmetrical six-step (5 + 1) algorithm.
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(6.89)

These functions are orthogonal at all frequencies, as expected.
The amplitudes of these two functions become equal at values
of the frequency signal equal to fr, 6fr, etc. Using Equation
5.77, the value of r(f) is given by:

(6.90)

Figure 6.36 Amplitudes of the Fourier transforms for reference
sampling functions for the symmetrical six-step (5 + 1) algorithm.
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From Figure 6.36 we can see that this algorithm has the
following properties:

1. It is not insensitive to small detuning errors, as the
two plots for the Fourier transform magnitude do not
touch each other tangentially at the reference fre-
quency, as desired.

2. Signals with frequencies fr, 4fr, 6fr, 9fr, etc. can be
detected, as the amplitudes of the Fourier transforms
are the same (even if of different sign) at these fre-
quencies.

3. Phase errors can be introduced by the presence in
the signal of fourth, sixth, and ninth harmonics. It is
insensitive to second, third, fifth, seventh, eighth,
and tenth harmonics.

6.5.4 Symmetrical Seven-Step (6 + 1) Algorithm

This algorithm was first described by Larkin and Oreb (1992).
The irradiance measurements for the seven sampling points,
as illustrated in Figure 6.37, are:

Figure 6.37 Symmetrical seven-step (6 + 1) algorithm.
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(6.91)

From these equations, the desired solution for the phase is:

(6.92)

The sampling weights have the values: W11 = 0, W12 = ,

W13 = , W14 = 0, W15 = , W16 = , W17 = 0, W21

= 1/2, W22 = 1/2, W23 = –1/2, W24 = –1, W25 = –1/2, W26 = 1/2,
and W27 = 1/2. Thus, the reference sampling functions are:

(6.93)

and

(6.94)

The Fourier transforms of the sampling functions, shown in
Figure 6.38, are:
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(6.95)

and

(6.96)

These functions are orthogonal at all frequencies, as expected.
The amplitudes of these two functions become equal at values
of the frequency signal equal to fr, 7fr, etc. Using Equation
5.77, the value of r(f) is given by:

(6.97)

Figure 6.38 Amplitudes of the Fourier transforms for reference
sampling functions for the symmetrical seven-step (6 + 1) algorithm.
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From Figure 6.38, we can see that this algorithm has the
following properties:

1. It is not insensitive to small detuning errors, as the
two plots for the Fourier transform amplitudes do not
touch each other tangentially at the reference fre-
quency, as desired.

2. Signals with frequencies fr, 5fr, 7fr, etc. can be
detected, as the amplitudes of the Fourier transforms
are the same (even if of different sign) at these fre-
quencies.

3. Phase errors can be introduced by the presence in
the signal of fifth and seventh harmonics. It is insen-
sitive to the second, third, fourth, sixth, eighth, and
ninth harmonics.

6.6 COMBINED ALGORITHMS 
IN QUADRATURE

We saw at the beginning of this chapter that, if the reference
function g1(f) is symmetric and g2(f) is antisymmetric, or vice
versa, the two functions are orthogonal at all frequencies.
Then, as shown in Chapter 5, in this case the phase error due
to detuning oscillates sinusoidally with the value of the phase
(φ + ψ(fr)), as expressed by Equation 5.154. Thus, if we use
two different sampling algorithms of this kind, but with two
different values of this phase (φ + ψ(fr)), the phase errors upon
detuning will have the same magnitudes but opposite sign. If
the two phase results are averaged, as follows, the phase error
due to detuning will cancel out:

(6.98)

Another possibility is to superimpose the two algorithms,
as proposed by Schwider et al., 1983, 1993). Let us assume
that the basic reference sampling functions are g1(x) and g2(x).
The only requirement is that the phase separation between
the sampling points must be a submultiple of π/2. Thus, the

′ = +− −
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shifted algorithm will have the same sampling points, with
only a few points being added to the final algorithm. For the
initial algorithm the phase equation is:

(6.99)

and for the shifted algorithm, from Equations 5.217 and 5.218,
the phase equation is:

(6.100)

Then, the phase equation for the combined algorithm is:

(6.101)

where xn = fr/4. The reference sampling functions for this
combined algorithm are:

(6.102)

and

(6.103)

The Fourier transforms of these functions are:
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(6.104)

and

(6.105)

but this last expression can be transformed into:

(6.106)

Then, writing the Fourier transforms in terms of their mag-
nitudes and phases, we find:

(6.107)

and

(6.108)

where γ1 and γ2 are the phases of the complex functions G1(f)
and G2(f), respectively.

This is a general expression for the combined algorithm,
formed by the base algorithm and its 90° shifted version.
Here, we have two possible cases. The first case is when, in
the base algorithm, the magnitudes of the Fourier transforms
G1(f) and G2(f) are equal at all frequencies but are orthogonal
only at the reference frequency (fr). In this case, we can show
that:
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(6.109)

and

(6.110)

We can see that these Fourier transforms are orthogonal at
all frequencies, but their magnitudes are equal only at the
reference frequency (fr).

A second particular case is when the orthogonality con-
dition in the original algorithm is satisfied at all frequencies
(γ2 = γ1 + π/2), but the magnitudes of G1(f) and G2(f) are equal
only at the reference frequency. In this case, we have:

(6.111)

and

(6.112)

We can see that the two reference sampling functions of the
combined algorithm have equal magnitudes at all frequencies,
but they are orthogonal only at the signal frequency. The
square magnitude is equal to:

′ = −
−( )⎛

⎝⎜
⎞
⎠⎟

×

× − +
−( )⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

G f G f
f
f

i
f
f

r

r

1 1
2 1

2 1

2
4 2

4 2

( ) ( ) cos

exp

π γ γ

π γ γ

′ = +
−( )⎛

⎝⎜
⎞
⎠⎟

×

× − +
+( ) +

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

G f G f
f
f

i
f
f

r

r

1 1
2 1

2 1

2
4 2

4 2 2

( ) ( ) sin

exp

π γ γ

π γ γ π

′ = + − −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
( )G f G f G f i

f
f

i
r

1 1 2 12
1( ) ( ) ( ) exp exp

π γ

′ = + −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
×

× − +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

G f G f G f i
f
f

i
f
f

r

r

2 1 2

1

2
1
2

2

( ) ( ) ( ) exp

exp

π

γ π π



(6.113)

In both cases, as expected, the combined algorithm is insen-
sitive to a small detuning. The formal mathematical proof is
left to the reader as an exercise.

Schmit and Creath (1995) extended this averaging con-
cept to multiple steps. Combining two detuning, uncompen-
sated algorithms provides an algorithm that is insensitive to
small detuning (that is, in a relatively small frequency range).
By repeating the same process in sequence and combining an
already compensated algorithm and its 90° shifted version, a
better compensated algorithm is obtained. These algorithms
(class B), are detuning insensitive in a wider frequency range.

Instead of multiple sequential applications of an algo-
rithm and its shifted version in a process referred to as the
multiple sequential technique, Schmit and Creath (1996) pro-
posed a method in which several shifted algorithms are com-
bined at the same time, in a process they call the multiple
averaging technique. Equations 6.102 and 6.103 then become:

(6.114)

and

(6.115)

6.6.1 Schwider Algorithm

Schwider et al. (1983, 1993) described an algorithm with four
sampling points separated by 90° that can be considered as
the sum of two three-point algorithms separated by 90°. The
first algorithm, shown in Figure 6.39a, is the three-step
inverted T algorithm described previously, for which the phase
equation is:

(6.116)
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The second algorithm is identical, but shifted by ε = π/2, as
described in Section 5.7.2 and illustrated in Figure 6.39b.
Then, the reference functions for the second algorithm, as
described by Equations 5.217 and 5.218, are as follows:

(6.117)

Let us now superimpose the two algorithms to obtain the
combined reference functions shown in Figure 6.40:

(6.118)

and

(6.119)

Figure 6.39 Sampling with two combined algorithms in quadra-
ture: (a) three-steps inverted T algorithm, and (b) inverted T algo-
rithm for π/2 shifted three steps.
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The phase is now given by:

(6.120)

and the sampling points are located at α1 = 0°, α2 = 90°, α3 =
180°, and α4 = 270°. The Fourier transforms of the sampling
functions become:

(6.121)

and

(6.122)

We can see that the amplitudes of these functions are equal
at all frequencies, as the orthogonality condition in the orig-
inal three-point algorithm was preserved at all frequencies

Figure 6.40 Sampling functions for the Schwider algorithm
obtained by combining two algorithms in quadrature.
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(see Figure 6.41). These Fourier transforms are orthogonal
only at the reference frequency (fr) and all odd harmonics, as
shown in Figure 6.42.

Figure 6.41 Fourier transform amplitudes of sampling functions
for the Schwider algorithm obtained by combining two algorithms
in quadrature.

Figure 6.42 Phases for the two reference functions in the Schwider
algorithm.
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We can also note in this figure that, at the signal fre-
quency and all its odd harmonics, the slope of this phase
difference is zero. Thus, we see that this algorithm has a low
detuning sensitivity, as shown in the phase error illustrated
in Figure 6.43. It has no sensitivity to the fourth and eight
harmonics.

Another equivalent algorithm with low sensitivity to
detuning can be obtained from this one by shifting the sam-
pling points π/2 + π/4 to the left, which is equal to –3π/4, as
shown in Section 5.10. Then, by applying the corresponding
relations, we obtain:

(6.123)

A singularity and indetermination are observed when φ = 0°
(s1 = –s4 and s2 = –s3). The sampling weights have the values
W11 = 0, W12 = –2, W13 = 2, W14 = 0, W21 = –1, W22 = 1, W23 = 1,
and W24 = –1. The reference sampling functions for this algo-
rithm (Figure 6.44) are:

(6.124)

and

Figure 6.43 Phase error as a function of the normalized frequency
for the Schwider algorithm.
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(6.125)

and the sampling points are located at α1 = –135°, α2 = –45°,
α3 = 45°, and α4 = 135°.

These Fourier transforms, shown in Figure 6.45, are thus
given by:

(6.126)

and

(6.127)

As we expected, these two functions are orthogonal at all fre-
quencies, as the original algorithm had the same amplitudes

Figure 6.44 Reference sampling functions for the shifted Schwider
algorithm.
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of the Fourier transforms at all frequencies. Because the two
Fourier transform plots touch each other tangentially at the
reference frequency, the algorithm has detuning insensitivity.
As for the original algorithm, this one has no sensitivity to the
fourth and eighth harmonics. The value of r(f), using Equation
5.77, is given by:

(6.128)

With this procedure more complex algorithms can be
generated by linearly combining several inverted T algo-
rithms instead of only two, each one shifted with respect to
the preceding algorithm by 90°. It must be noted, however,
that the insensitivity to detuning is obtained only when they
are added in such a manner that the sum of all odd coeffi-
cients of the linear combination is equal to the sum of all
even coefficients.

Figure 6.45 Amplitudes of the Fourier transforms of reference
sampling functions for the shifted Schwider algorithm.
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6.6.2 Schmit and Creath Algorithm

This class B algorithm with five sampling points was
described by Schmit and Creath (1995). The base algorithm
is the Schwider algorithm (Equation 6.123):

(6.129)

and the 90° shifted algorithm is:

(6.130)

Hence, the combined algorithm is:

(6.131)

with the reference sampling functions shown in Figure 6.46;
the sampling functions are located at α1 = –135°, α2 = –45°,
α3 = 45°, α4 = 135°, and α5 = 225°. The Fourier transforms of
these reference sampling functions, illustrated in Figure 6.47,
are:

(6.132)

and

(6.133)
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Figure 6.46 Reference sampling functions for the Schmit and
Creath algorithm.

Figure 6.47 Fourier transforms of reference sampling functions
for the Schmit and Creath algorithm.
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The amplitudes of these Fourier transforms are equal at all
frequencies. The orthogonality condition is valid in a small
region about the reference frequency (Figure 6.48), making the
algorithm insensitive to small detunings. As the figure shows,
it has insensitivity to only the fourth and eighth harmonics.

The phase error with detuning for this algorithm is
shown in Figure 6.49. If we shift the sampling points of this

Figure 6.48 Phase for the reference sampling functions for the
Schmit and Creath algorithm.

Figure 6.49 Phase error vs. the normalized frequency for the
Schmit and Creath algorithm.
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algorithm by π/4 to the left and apply Equations 5.223 and
5.224, we obtain:

(6.134)

with the reference sampling functions as illustrated in Figure
6.50 and the sampling points at α1 = –45°, α2 = 45°, α3 = 135°,
α4 = 225°, and α5 = 315°.

The Fourier transforms of these reference sampling func-
tions, illustrated in Figure 6.51, are:

(6.135)

and

Figure 6.50 Reference sampling functions for the shifted Schmit
and Creath algorithm.
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(6.136)

These Fourier transforms are orthogonal at all signal frequen-
cies. The slope of these functions is the same at the reference
frequency, where we also have the same amplitudes, thus
making the algorithm insensitive to small detuning. As for
the original algorithm, this one is insensitive to the fourth
and eighth signal harmonics.

6.6.3 Other Detuning-Insensitive Algorithms

Many other detuning-insensitive algorithms have been
designed, some of which have the additional important char-
acteristic that they are also insensitive to harmonics (that is,
to distorted signals). An interesting algorithm with great
detuning insensitivity was designed by Servín et al. (1997)
using an optimization procedure as described in Chapter 5.
This algorithm was designed with seven equally spaced sam-
pling points with a phase interval of π/2 and optimized for
detuning, using the following weights:

Figure 6.51 Fourier transforms of reference sampling functions
for the shifted Schmit and Creath algorithm.
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(6.137)

With these parameters, we can define an algorithm with
attenuation in the third harmonic. The solution of the linear
system with seven phase steps (αi) at –3π/2, –π, –π/2, 0, π/2,
π, and 3π/2 produce the phase equation:

(6.138)

Figure 6.52 shows the Fourier transforms of the reference
sampling functions, illustrating the frequency response and
detuning insensitivity of this algorithm. Figure 6.53 shows
the detuning insensitivity of this algorithm. For comparison

Figure 6.52 Fourier transforms of reference sampling functions
for the optimized seven-sample algorithm designed by Servín et al.
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purposes, this figure shows the detuning insensitivity of the
Schwider–Hariharan algorithm compared with this algo-
rithm. It should be pointed out that the detuning insensitivity
obtained in the algorithms presented here has been obtained
at the expense of any possible harmonic leaks.

6.7 DETUNING-INSENSITIVE ALGORITHMS 
FOR DISTORTED SIGNALS

When a signal is distorted and, as a consequence, harmonics
are present, a detuning-insensitive algorithm must also be
insensitive to the signal harmonics. The reason is that, when
detuning is present, not only is the fundamental frequency
detuned but also its harmonics. This problem, first studied by
Hibino et al. (1995) and a little later by Surrel (1996) and
Zhao and Surrel (1995), has been described in Section 5.9.

In order to have an algorithm with detuning sensitivity
up the mth harmonic we need enough sampling points to
determine the signal bias, the amplitudes of all harmonic com-
ponents (i.e., S0, S1, S2, …, Sm), their phases (φ1, φ2, …, φm) in
Equation 5.57, and the magnitude of the linear phase error.
This results in a total of 2m + 2 unknowns; thus, a minimum
of 2m + 2 sampling points is needed. It should be pointed out
here that Hibino et al. (1995) found that a minimum of 2m +
3 points was necessary, but this value was later corrected by
Surrel (1996).

Figure 6.53 Detuning sensitivity of the optimized seven-sample
algorithm.

Normalized frequency

P
ha

se
 e

rr
or

10.5 1.5

π/50

0

−π/50



An algorithm with detuning insensitivity up to the mth
harmonic, as pointed out before, requires that:

1. The phase interval between sampling points is
smaller than 2π/(m+2).

2. When the maximum phase interval is used, the min-
imum number of sampling points is 2m + 2. With a
smaller phase interval the number of required sam-
pling points would be larger.

For example, as described in Table 6.1, an algorithm that is
detuning insensitive only up to the second harmonic using
the maximum phase interval of 90° must have at least six
sampling points. If this phase interval is reduced, more than
six points are needed.

6.7.1 Zhao and Surrel Algorithm

Let us now consider the six-sample algorithm (Zhao and Sur-
rel, 1995; Surrel, 1996), which takes six signal measurements
at constant phase intervals equal to 90°, as follows:

TABLE 6.1 Minimum Number of Sampling Points for Detuning-
Insensitive Algorithms with Harmonically Distorted Signals

Minimum Number 
of Samples 

(N = 2m + 2)

Maximum Harmonic 
(m) with Detuning 

Insensitivity

Maximum Phase 
Interval

(2ππππ/(m + 2))

4 1 120°

6 2 90°

8 3 72°

10 4 60°

12 5 51.14°

14 6 45°

Source: Data from Hibino et al. (1995) and Surrel (1996).



(6.139)

From these equations, the desired solution for the phase that
satisfies the conditions described earlier, is:

(6.140)

Thus, the reference sampling functions (Figure 6.54) are:

(6.141)

and

(6.142)

The Fourier transforms for these reference sampling functions
(Figure 6.55) are:

(6.143)
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and

(6.144)

These Fourier transforms have the same amplitudes at all
frequencies, but they are orthogonal in the vicinity of the
reference frequency and the second harmonic, as illustrated
in Figure 6.56. This algorithm is shifted π/4 with respect to
the one described in the articles by Zhao and Surrel (1995)
and Surrel (1996) which is orthogonal to all frequencies, but

Figure 6.54 Reference sampling functions for the six-sample
detuning-insensitive algorithm.
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their magnitudes are equal in the vicinity of the reference
frequency and its second harmonic. When shifting, the algo-
rithm properties are preserved. This algorithm is detuning

Figure 6.55 Fourier transforms for the six-sample detuning-
insensitive algorithm.

Figure 6.56 Phases for the reference functions in the Zhao–Surrel
six-sample detuning-insensitive algorithm.
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insensitive up to the second harmonic, but it is not insensitive
to the third harmonic. The phase error in the presence of
detuning is shown in Figure 6.57.

6.7.2 Hibino Algorithm

Another algorithm with small sensitivity to the second har-
monic, even when detuning is present, uses seven sampling
points and has been described by Hibino et al. (1995). The
phase is calculated by:

(6.145)

and the reference sampling functions (Figure 6.58) are:

(6.146)

and

(6.147)

Figure 6.57 Phase error vs. the normalized frequency in the Zhao–
Surrel six-sample detuning-insensitive algorithm.
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The Fourier transforms for the reference sampling functions
(Figure 6.59) are:

(6.148)

and

(6.149)

An interesting property of this algorithm is that it is insen-
sitive to all even harmonics as well as to small detuning of
these harmonics; however, it is sensitive to odd harmonics.
The phase error for this algorithm in the presence of detuning
is illustrated in Figure 6.60.

Figure 6.58 Reference sampling functions for the seven-sample
detuning-insensitive algorithm.
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6.7.3 Six-Sample, Detuning-Insensitive 
Algorithm

By using the graphical method described in Section 5.5.4, some
other detuning-insensitive algorithms have been designed. As
an example, let us consider the one designed by Malacara-
Doblado and Vazquez-Dorrío (2000) that has six sampling
points. The phase is given by:

Figure 6.59 Fourier transforms for the seven-sample, detuning-
insensitive algorithm.

Figure 6.60 Phase error vs. the normalized frequency in the
seven-sample, detuning-insensitive algorithm.
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(6.150)

and the reference sampling functions (Figure 6.61) are given
by:

(6.151)

and

(6.152)

The Fourier transforms for the reference sampling functions
(Figure 6.62) are:

Figure 6.61 Reference sampling functions for the six-sample,
detuning-insensitive algorithm designed by Malacara-Doblado and
Vazquez-Dorrío (2000).
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(6.153)

and

(6.154)

This algorithm is detuning insensitive at the fundamental
frequency as well as at the second, sixth, and eighth harmon-
ics. It is insensitive to all even harmonics. The detuning phase
error is illustrated in Figure 6.63.

6.8 ALGORITHMS CORRECTED FOR 
NONLINEAR PHASE-SHIFTING ERROR

In Chapter 5, we described how algorithms can be designed
for insensitivity to high-order nonlinear phase shifting in the
presence of signal harmonic distortion (Hibino, 1997;  Surrel,
1998; Hibino, 1999; Hibino and Yamauchi, 2000). It was

Figure 6.62 Fourier transforms of the reference sampling
functions for the six-sample, detuning-insensitive algorithm.
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shown that the minimum number of samples necessary to
compensate for these errors is six and that a very good cor-
rection can be achieved with eleven points. In this section, we
describe three of these algorithms.

The first algorithm uses six sampling points. The refer-
ence sampling functions for the six-sample algorithm with
correction for nonlinear phase errors are shown in Figure
6.64. The Fourier transforms of the reference sampling func-
tions for this six-sample algorithm with correction for nonlin-
ear phase errors are shown in Figure 6.65. The phase errors
as a function of the normalized frequency for the six-sample
algorithm with correction for nonlinear phase errors are illus-
trated in Figure 6.66.

The second algorithm uses nine sampling points. The
reference sampling functions for the nine-sample algorithm
with correction for nonlinear phase errors are shown in Figure
6.67. The Fourier transforms of the reference sampling func-
tions for the nine-sample algorithm with correction for non-
linear phase errors are shown in Figure 6.68. The phase errors
as a function of the normalized frequency for the nine-sample
algorithm with correction for nonlinear phase errors are illus-
trated in Figure 6.69.

The last example is an algorithm that uses eleven sam-
pling points. The reference sampling functions for the eleven-
sample algorithm with correction for nonlinear phase errors
are shown in Figure 6.70. The Fourier transforms of the

Figure 6.63 Phase error as a function of the normalized frequency
for the six-sample, detuning-insensitive algorithm.
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Figure 6.64 Reference sampling functions for the six-sample
algorithm with correction for nonlinear phase error designed by
Hibino et al. (1997).

Figure 6.65 Fourier transforms of the reference sampling
functions for the six-sample algorithm with correction for nonlinear
phase error designed by Hibino et al. (1997).
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reference sampling functions for the eleven-sample algorithm
with correction for nonlinear phase errors are shown in Fig-
ure 6.71. The phase errors as a function of the normalized
frequency for the eleven-sample algorithm with correction for
nonlinear phase errors are illustrated in Figure 6.72.

Figure 6.66 Phase error as a function of the normalized frequency
for the six-sample algorithm with correction for nonlinear phase
error designed by Hibino et al. (1997).

Figure 6.67 Reference sampling functions for the nine-sample
algorithm with correction for nonlinear phase error designed by
Hibino et al. (1997).
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6.9 CONTINUOUS SAMPLING 
IN A FINITE INTERVAL

When sampling a sinusoidal signal with a finite aperture or
a finite sampling interval, this aperture or finite interval acts
as a filtering window. This problem has been studied by Naka-
date (1988a,b) but with a different approach than that pre-
sented here. Here, we will use a similar but slightly simpler
approach, using the Fourier theory just developed.

Figure 6.68 Fourier transforms of the reference sampling functions
for the nine-sample algorithm with correction for nonlinear phase
error designed by Hibino et al. (1997).

Figure 6.69 Phase error as a function of the normalized frequency
for the nine-sample algorithm with correction for nonlinear phase
error designed by Hibino et al. (1997).
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The tentative sampling functions using a finite interval
of size X can be written as:

Figure 6.70 Reference sampling functions for the eleven-sample
algorithm with correction for nonlinear phase error designed by
Hibino et al. (1997).

Figure 6.71 Fourier transforms of the reference sampling functions
for the eleven-sample algorithm with correction for nonlinear phase
error designed by Hibino et al. (1997).
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(6.155)

and

(6.156)

Then, the Fourier transforms of these functions (Figure 6.73)
can be written as:

(6.157)

and

(6.158)

We can see, as shown in Figure 6.73, that the separation
between these two sinc functions is equal to twice the refer-
ence frequency (fr). When the reference frequency is large
compared to 1/X, the two sinc functions are quite separated
from each other, and the side lobes of one will not overlap the

Figure 6.72 Phase error as a function of the normalized frequency
for the eleven-sample algorithm with correction for nonlinear phase
error designed by Hibino et al. (1997).
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other (Figure 6.73a). On the other hand, if the reference
frequency is low as compared to 1/X, the side lobes of one sinc
function will overlap the other sinc function (Figure 6.73b),
where X = Xr = 1/fr.

Because the functions Gi(f) are the sum of the two sinc
functions, the Gi(fr) will not change and will remain equal to
each other when:

(6.159)

where n is any positive integer. In this case, no error is present
in the phase detection. This result means that the sampling
interval (or aperture) should be an integral number of half the
spatial period of the fringes (refer to Section 5.2). This property
was used by Morimoto and Fujisawa (1994). A peak in the error
will occur, however, at intermediate positions given by:

(6.160)

Figure 6.73 Fourier transforms of functions g1(x) and g2(x) with
continuous sampling in a finite interval: (a) with X >> Xr and (b)
X = Xr.
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If a phase-detecting algorithm uses the sampling interval Xr,
then the phase φ is given by:

(6.161)

with the reference sampling functions as shown in Figure 6.74.
The Fourier transforms of the reference sampling functions are:

(6.162)

and

(6.163)

which are illustrated in Figure 6.75. The Fourier transforms
shown in this figure are orthogonal at all signal frequencies,
but they have the same amplitude only at the reference

Figure 6.74 Reference sampling functions g1(x) and g2(x) for a
continuous sampling interval Xr = 1/fr.
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frequency. Thus, this algorithm is sensitive to detuning. It is
quite interesting to note the lack of sensitivity to any har-
monics in the absence of detuning. Insensitivity to small
detuning can be obtained if the additional sampling points
at the ends of the sampling interval, as described in Section
6.5, are used. This is a limit case for discrete sampling algo-
rithms, when the number of sampling steps tends to infinity.

6.10 ASYNCHRONOUS PHASE-DETECTION 
ALGORITHMS

In synchronous detection we have assumed that the frequency
of the detected signal and the phase steps taken during the
measurements are known; however, at times the phase steps
or frequency of the measured signal are unknown. In that case,
before calculating the phase the signal frequency must be deter-
mined. To do so, we need a minimum of four sampling points.

If we examine the expression for r(f) in Equation 5.62, we
see that, if we require that the two Fourier transforms G1(f)
and G2(f) have the same phase φ instead of being orthogonal
to each other and if we also remove the condition that their
magnitudes are equal, using Equation 5.77 we obtain:

Figure 6.75 Fourier transforms of functions g1(x) and g2(x) for a
continuous sampling interval Xr = 1/fr.
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(6.164)

This is possible if the two reference functions are both anti-
symmetric and different.

Then, we can see that the value of r(f) is not a function
of the signal phase φ as before. Instead, it is a function of the
signal frequency. The value of r(f) can be calculated for a given
sampling algorithm satisfying this condition, thus allowing
determination of the signal frequency. A simple way to obtain
Fourier transforms with the same phase is to require that the
reference sampling functions g1(x) and g2(x) are both antisym-
metrical or both symmetrical. Thus, they must have different
frequencies, normally equal to fr and 2fr, respectively.

We can see that if the reference functions g1(x) and g2(x)
are antisymmetrical and the signal is symmetrical, or vice
versa, both integrals in this expression become equal to zero.
Then, with symmetric reference functions the value of r(f)
becomes undetermined when the signal is symmetrical (that
is, when the phase has a value equal to nπ, n being an integer).
On the other hand, with antisymmetric reference functions,
the value of r(f) becomes undetermined when the signal is
antisymmetrical (that is, when the phase has a value equal
to nπ/2, n being an odd integer).

6.10.1 Carré Algorithm

This is the classic asynchronous algorithm, developed by Carré
(1966), where four measurements of the signal are taken at
equally spaced phase increments. The sampling points are sym-
metrically placed with respect to the origin, as expressed by:

(6.165)
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where the phase increment is 2β. If the reference frequency
(fr) and signal frequency (f) are different, the phase incre-
ments would have a different value when referred to the
reference function or to the signal phase scales. When mea-
sured with respect to the signal phase scale, its value is β,
but if measured with respect to the reference function phase
scale its value is α. In synchronous phase detection, we have
α = β, but in general we have:

(6.166)

The value of β is unknown, either because the value of α or
the frequency (f) of the signal is unknown. The most common
phase step used in this algorithm is α = π/4. The value of β
can be calculated by using the following expression obtained
from Equation 6.165:

(6.167)

or, alternatively, by defining a value of rβ(f) given by:

(6.168)

with the reference functions for which the sampling weights
have the values W11 = –1, W12 = –1, W13 = 1, W14 = 1, W21 = 1,
W22 = –1, W23 = 1, and W24 = –1. Singularity and indetermina-
tion are observed when sinφ = 0, because then s2 = s3 and s1 =
s4. Singularity and indetermination also occur when β = π/2.
The reference sampling functions for α = π/4 (Figure 6.76) are:

(6.169)

and

(6.170)
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The Fourier transforms of the sampling functions for α = π/4
(Figure 6.77) are:

(6.171)

and

(6.172)

We can observe in this figure that these functions are sym-
metrical about the value of the normalized frequency equal
to 2, which corresponds to β = π/2. Hence, the measurement
of β can be performed without uncertainty only if it is in the
range 0 < β < π/2. Hence, the value of the reference frequency
(fr) should in principle be chosen so that the values of α and
β are as close as possible to each other. In other words, the
reference frequency should be higher than half the signal
frequency but as close as possible to this value. This condition
can also be expressed by saying that the four sampling points

Figure 6.76 Sampling in the Carré algorithm, with α = π/4, to
obtain the signal frequency.
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must be separated by at least a fourth of the period of the
signal. Nevertheless, if we take into account the presence of
additive noise in the measurements, it can be shown that the
noise influence is minimized when β = 110°, as pointed out
by Carré (1966) and Freischlad and Koliopoulos (1990).

Figure 6.77 illustrates the singularity and indetermina-
tion that occur when β = π, as both Fourier transform ampli-
tudes are zero. This algorithm is quite sensitive to signal
harmonics.

Once the value of β has been calculated, the signal phase
φ can be found using another algorithm with the same sam-
pling points and, hence, the same measured values:

(6.173)

As in the previous algorithm, indetermination occurs when
φ = 0, as s1 = s3 and s1 = s4. Hence, when φ is small, large
errors can occur.

Figure 6.77 Amplitudes of the Fourier transforms of the reference
functions for the Carré algorithm for α = π/4, to obtain the signal
frequency.
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Having calculated the value of β with a set of four sam-
pling points, the same value of β can be used to calculate the
phase for several signal points with different locations, if the
frequency for the signal is the same everywhere. This is the
case of temporal phase shifting, where the signal frequency
is frequently the same for all points in the interferogram.
Alternatively, if the frequency is not constant, such as in space
phase shifting, when the wavefront is not aberration free the
value of β has to be calculated for every point where the phase
is to be determined.

Let us consider the first case in which the value of β is
a constant. We can write Equation 6.161 as:

(6.174)

with the sampling weight values W11 = tanβ, W12 = tanβ, W13 =
–tanβ, W14 = –tanβ, W21 = 1, W22 = –1, W23 = –1, and W24 = 1.
The reference sampling functions (Figure 6.78) are:

Figure 6.78 Sampling in the reference function for the Carré
algorithm with α = π/4 and a constant value of β, to find the phase.
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(6.175)

and

(6.176)

The Fourier transforms of the sampling functions with α =
π/4 are thus given by:

(6.177)

and

(6.178)

which are illustrated in Figure 6.79.

Figure 6.79 Amplitudes of the Fourier transforms of the reference
functions in the Carré algorithm using α = π/4 and two different
constant values of β.
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We can see that this algorithm is insensitive to all even
harmonics, only if β/α = 1, which is not frequent, and it is
always quite sensitive to all odd harmonics. It must be pointed
out here that this is for the second part, after β has been
calculated, but errors due to the presence of harmonics can
also appear in the calculation of β, as we pointed out before.
We can also see that it is quite sensitive to detuning, but that
is not a serious problem, as the frequency has been previously
calculated in the first step. Notice that this algorithm is iden-
tical to the four points in the X algorithm, described previ-
ously, when β/α = 1.

A problem arises, however, if the value of β is not a
constant for all locations where it is measured. Then, the
frequency is not a constant, and it is better to recalculate β
every time the phase is to be obtained. Then, we can combine
Equations 6.156 and 6.161, with the result:

(6.179)

thus removing the indetermination.
We can see that, in this case, by substituting the value

of β in Equation 6.166 into Equation 6.177 for G1(f), the two
Fourier transforms, G1(f), and G2(f), become equal at all fre-
quencies. This is to be expected, because we now have no
detuning error, as the algorithm is self calibrating.

One problem with this algorithm is that the numerator
in this expression is the square of a number; thus, the sign
of sinφ is lost. As a consequence, the phase is wrapped modulo
π instead of modulo 2π as for most phase-detecting algorithms.
Figure 6.80 shows the phase wrapping in the Carré algorithm
compared with phase wrapping in other algorithms. The
Carré algorithm has been adapted by Rastogi (1993) to the
study of four-wave holographic interferometry.

6.10.2 Schwider Asynchronous Algorithm

This asynchronous algorithm (Schwider et al., 1983; Cheng
and Wyant, 1985) has four sampling points at phases –2β, –β,
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β, and 2β (with β as defined in Equation 6.166) and a value
of α = π/4. The cosine of the phase increment becomes:

(6.180)

and the reference sampling functions (Figure 6.81) are:

Figure 6.80 Phase wrapping in the Carré algorithm compared
with that for other phase-detecting algorithms.

Figure 6.81 Reference sampling functions for the Schwider
asynchronous algorithm.
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(6.181)

and

(6.182)

The Fourier transforms of these reference sampling functions
(Figure 6.82) are:

(6.183)

and

(6.184)

In this algorithm the reference frequency can be as low as
one eighth of the signal frequency; however, singularities and
indeterminations are observed at f/fr equal to 4 and 8. Ideally,
the reference frequency should be as close as possible to the

Figure 6.82 Amplitudes of the Fourier transforms of the reference
sampling functions for the Schwider asynchronous algorithm.
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signal frequency. This algorithm has a large sensitivity to the
presence of signal harmonics.

6.10.3 Two Algorithms in Quadrature

We have seen in Section 6.6 that two algorithms in quadrature
produce phases with opposite errors in the phase; hence, by
averaging their phases, as in Equation 6.85, the error-free
phase can be calculated. The error in the phase can be obtained
if, instead of averaging the two phases, their difference is taken: 

(6.185)

Now, from Equation 5.154, if the base (nonshifted) algorithm 
is orthogonal at all frequencies, we have:

(6.186)

where the phase φ is calculated with Equation 6.98.
Once the value of ρ(f) (which is different from 1) has been

obtained, the normalized frequency f/fr can be calculated,
because, for these algorithms, from Equation 5.77 we have
r(f) = ±ρ(f)tanφ. For example, if the inverted T algorithm has
been used, we have:

(6.187)

6.10.4 An Algorithm for Zero Bias 
and Three Sampling Points

We have seen that four measurements are necessary to deter-
mine the four parameters of a sinusoidal signal (i.e., a, b, φ0,
and ω). Ransom and Kokal (1986) and later Servín and Cuevas
(1995) described a method in which the DC (bias) term is first
eliminated from the signal by means of a convolution with a
high-pass filter, as described in Section 2.4.1. Then, the only
problem remaining is that the entire signal interval must be
sampled and processed before sampling the phase-measuring
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points. Thus, after eliminating the bias (coefficient a), the
signal can be expressed by:

(6.188)

If three sampling points at x positions x0, 0, and –x0 are used,
we have:

(6.189)

(6.190)
and

(6.191)

But, these three expressions can also be written as:

(6.192)

(6.193)
and

(6.194)

Then, it is easy to see that
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and

(6.196)

Now, from Equation 6.195:
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Thus, it is easy to show from Equations 6.196 and 6.197 that
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We can see that this phase expression is insensitive to the
signal frequency; hence, the result is not affected by detun-
ings. The unknown signal frequency can then be found with:

(6.199)

6.10.5 Correlation with Two Sinusoidal 
Signals in Quadrature

In Chapter 5, we studied the synchronous detection method
utilizing multiplication of the signal by two orthogonal sinu-
soidal reference functions with the same frequency as the
signal. Let us now assume that the two reference orthogonal
functions have a different frequency (ωr) than the signal. The
parameters S and C are not constants; instead, we now have:

(6.200)

and

(6.201)

These two functions contain three spatial frequencies, the
reference frequency, the sum of the reference and the signal
frequencies, and their difference. If we apply a low-pass filter,
so that only the term with the frequency difference remains,
we obtain the filtered versions of S(x) and C(x) as:

(6.202)
and

(6.203)
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(6.204)

which is possible only if the reference frequency (fr) is higher
than half the signal frequency:

(6.205)

but ideally both frequencies should be equal.
The low-pass filtering process is performed by means of

a convolution with a filtering function, h(x). Then, the values
of S(x) and C(x) can be expressed by:

(6.206)

and

(6.207)

The filtering function must be selected so the term with the
lowest frequency (the difference term) remains; hence, we can
also write:

(6.208)

6.11 ALGORITHM SUMMARY

In this section, we describe some of the main properties of
phase-detecting algorithms.

6.11.1 Detuning Sensitivity

We have seen in Chapter 4 that by shifting the sampling point
locations we can obtain an algorithm in which the Fourier
transforms of the reference sampling functions are either
orthogonal or have the same magnitudes at all frequencies.
We have also seen that the sensitivity to detuning is not
affected by this shifting of the sampling points.
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The detuning sensitivity for some of the main algorithms
described in this chapter are now described. In the following
figures, the peak phase error is represented by the quantity in
front of the sine function in Equation 5.154. Figure 6.83 illus-
trates the detuning errors for four algorithms. The first plot
(Figure 6.83a) is for the 120° three-step algorithm. This is the
algorithm with the largest error. The second plot (Figure 6.83b)
is for the three-step inverted T algorithm. In this case, the sign
of the error is opposite the sign of that in Figure 6.83a. The
third plot (Figure 6.83c) is for the four-step X algorithm. The
fourth plot (Figure 6.83d) is for the five-step algorithm. This
phase error is the smallest of the four algorithms, but not by
much.

Figure 6.84 shows the detuning phase error for some
symmetrical (N +1) algorithms. The first plot (Figure 6.84a) is
for the four-step (3 +1) algorithm, and we can detect sensitivity
to detuning in the plot. If this algorithm is compensated with
the extra sampling weights described before (Figure 6.84b),
the sensitivity to detuning is reduced, as the slope of the curve
is zero at the origin. The next plot (Figure 6.84c) is for the
popular Schwider–Hariharan five-step (4+1) algorithm, where
the insensitivity to detuning is clearly seen to be better than
in the four-step (3 + 1) algorithm. The six-step (5 + 1) algorithm
is not compensated by the extra sampling weights; thus, some

Figure 6.83 Detuning sensitivity for four algorithms: (a) 120°
three-step, (b) three-step inverted T, (c) four-step in X, and (d) five-
step.

(d) Five-step

Normalized frequency

P
ha

se
 e

rr
or

10.5 1.5

π/10

0

−π/10

(c) Four-step in X

(a) 120° three-step

(b) Three-step inverted T



detuning sensitivity is present. Finally, the seven-step (6 + 1)
algorithm also has some detuning sensitivity because it is also
uncompensated. If compensated, this algorithm features the
lowest detuning sensitivity. Figure 6.85 shows the detuning
sensitivities for the Schwider–Hariharan, Schmit–Creath,
Servín, and Malacara-Dorrío algorithms.

Figure 6.84 Detuning sensitivity for five symmetrical N + 1
algorithms: (a) uncompensated four-step (3 + 1), (b) compensated four-
step, (c) Schwider–Hariharan five-step (4 + 1), (d) uncompensated
six-step (5 + 1), and (e) uncompensated seven-step (6 + 1).

Figure 6.85 Detuning sensitivities for the Schwider–Hariharan,
Schmit–Creath, Servín, and Malacara–Dorrío algorithms.
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6.11.2 Harmonic Sensitivity

The harmonic sensitivities for some of the algorithms described
in this chapter are summarized in Table 6.2.
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7

Phase-Shifting Interferometry

7.1 PHASE-SHIFTING BASIC PRINCIPLES

Early phase-shifting interferometric techniques can be traced
back to Carré (1966), but their further development and appli-
cation were later reported by Crane (1969), Moore (1973), and
Bruning et al. (1974), among others. These techniques have
also been applied to speckle-pattern interferometry (Creath,
1985; Nakadate and Saito, 1985; Robinson and Williams, 1986)
and to holographic interferometry (Nakadate et al., 1986; Stet-
son and Brohinski, 1988), and many reviews of this field have
been published (e.g., Greivenkamp and Bruning, 1992). 

In phase-shifting interferometers, the reference wave-
front is moved along the direction of propagation with respect
to the wavefront being analyzed, thus changing the phase
differences. By measuring the irradiance changes for various
phase shifts, it is possible to determine the phase for a wave-
front, relative to the reference wavefront, for the measured
point on that wavefront. The irradiance signal, s(x,y), at point
(x,y) in the detector changes with the phase:

(7.1)

where φ(x,y) is the phase at the origin, and α is a known phase
shift with respect to the origin. By measuring the phase for

s x y a x y b x y x y( , , ) ( , ) ( , )cos ( , )α α φ= + +( )



many points over the wavefront, the complete wavefront
shape is thus determined.

If we consider any fixed point in the interferogram, the
phase difference between the two wavefronts must be changed.
We might wonder, though, how this is possible, because rela-
tivity does not permit either of the two wavefronts to move
faster than the other, as the phase velocity is c for both waves.
It has been shown (Malacara et al., 1969), however, that the
Doppler effect occurs, producing a shift in both frequency and
wavelength. The two beams, with different wavelengths, inter-
fere with each other, producing beats. These beats can also be
interpreted as changes in irradiance due to the continuously
changing phase difference. These two conceptually different
models are physically equivalent.

The change in the phase, then, can be accomplished if
the frequency of one of the beams is modified during the
process. This is possible in a continuous fashion using some
devices, but for only a relatively short period of time with
other devices. This fact has led to the following problem in
semantics: When the frequency can be modified in a perma-
nent way, some people refer to such instruments as AC, het-
erodyne, or frequency-shift interferometers; otherwise, the
instrument is considered a phase-shifting interferometer.
Here, we will refer to all of these instruments as phase-
shifting interferometers.

7.2 AN INTRODUCTION TO PHASE SHIFTING

The procedure just described can be implemented using
almost any kind of two-beam interferometer, such as, for
example, Twyman–Green or Fizeau interferometers. The
phase can be shifted in several different ways, as reviewed
by Creath (1988).

7.2.1 Moving Mirror with a Linear Transducer

One method is to move the mirror for the reference beam along
the light trajectory by means of an electromagnetic or piezo-
electric transducer, as shown in Figure 7.1 for a Twyman–



Green interferometer. The transducer moves the mirror so
the phase is changed to a new value, as shown in Figure 7.2a.
Alternatively, one can think of the reflected light as Doppler-
shifted light. A piezoelectric transducer (PZT) typically has
a linear displacement of over 1 μm (2λ). Voltages ranging
from zero to a few hundred volts are used to produce the
displacement.

7.2.2 Rotating Glass Plate

Another method for shifting the phase is to insert a plane-
parallel glass plate in the light beam (Wyant and Shagam,
1978), as shown in Figure 7.2b. The phase shift (α) introduced
by this glass plate, when tilted by angle θ with respect to the
optical axis, is given by:

(7.2)

Figure 7.1 Twyman–Green interferometer with a phase-shifting
transducer.
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where t is the plate thickness, n is its refractive index, and k
= 2π/λ. The angles θ and θ′ are the angles between the normal
to the glass plate and the light rays outside and inside the
plate, respectively. A rotation of the plate that increases angle
θ also increases the optical path difference; thus, if the plate
is rotated a small angle (Δθ), the phase shift (α) is given by:

(7.3)

An important requirement in this method is that the plate
must be inserted in a collimated light beam to avoid intro-
ducing aberrations.

7.2.3 Moving Diffraction Grating

Another way to shift the phase is to use a diffraction grating
or ruling moving perpendicularly to the light beam (Suzuki
and Hioki, 1967; Stevenson, 1970; Bryngdahl, 1976; Srini-
vasan et al., 1985) as shown in Figure 7.2c. It is easy to see
that the phase of the diffracted light beam is shifted n × 2π
the number of slits that pass through a fixed point, where n

Figure 7.2 Some methods to shift the phase in an interferometer:
(a) mirror moving along the light path, (b) rotating glass plate, (c)
moving diffraction grating, and (d) Bragg cell.
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represents the order of diffraction. Thus, the shift in the
frequency is equal to n times the number of slits in the grating
that pass through a fixed point within a unit of time. Put
differently, the shift in the frequency is equal to the speed of
the grating divided by period d of the grating. It is interesting
to note that the frequency is increased for the light beams
diffracted in the same direction as the movement of the grat-
ing. Light beams diffracted in the direction opposite that of
the movement of the grating decrease in frequency. As
expected, the direction of the beam is changed because the
first-order beam must be used and the zero-order beam must
be blocked by means of a properly placed diaphragm.

If the diffraction grating is moved a small distance (Δy),
then the phase changes by an amount (α) given by:

(7.4)

where d is the period of the grating and n is the order of
diffraction.

A Ronchi ruling moving perpendicularly to its lines in the
Ronchi test is a particular case of a moving diffraction grating.
This method has been used by several researchers (e.g., Inde-
betow, 1978) under the name of running projection fringes.

A similar method utilizes diffraction of light by means
of an acoustic optic Bragg cell (Massie and Nelson, 1978;
Wyant and Shagam, 1978; Shagam, 1983), as shown in Figure
7.2d. An acoustic transducer produces ultrasonic vibrations
in the liquid of the cell. These vibrations produce periodic
changes in the refractive index, inducing the cell to act as a
thick diffraction grating. This thickness effect makes this
diffraction device an efficient one for the desired order of
diffraction.

7.2.4 Rotating Phase Plate

The phase can also be shifted by means of a rotating plane-
parallel glass plate (Crane, 1969; Okoomian, 1969; Bryng-
dahl, 1972; Sommargren, 1975; Shagam and Wyant, 1978;
Hu, 1983; Zhi, 1983; Kothiyal and Delisle, 1984, 1985; Salbut

α π= 2 n
d

yΔ



and Patorski, 1990) as shown in Figure 7.3. If a beam of
circularly polarized light goes through a half-wave phase plate,
the direction of the circular polarization is reversed, as shown
in Figure 7.3a. If the half-wave phase plate rotates, the fre-
quency of the light changes. If the plate rotates in a continuous
manner, the frequency change (Δν) is equal to twice the fre-
quency of rotation of the plate. If the phase plate is rotated a
small angle (Δθ), the phase changes by α as follows:

(7.5)

This arrangement works if the light passes through the phase
plate only once; however, in a Twyman–Green interferometer,
the light passes through the system twice, so the configura-
tion shown in Figure 7.3b is used. The first quarter-wave
retarding plate is stationary, with its slow axis located at 45°
with respect to the plane of polarization of the incident lin-
early polarized light. This plate also transforms the returning
circularly polarized light back to being linearly polarized. The

Figure 7.3 Polarized light device to shift the phase.
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second phase retarder is also a quarter-wave plate, but it
rotates and the light passes through it twice, so it really acts
as a half-wave plate.

7.2.5 Moiré in an Interferogram 
with a Linear Carrier

Let us consider an interferogram with a large linear carrier
— that is, with many fringes produced by means of a reference
wavefront tilt. If a Ronchi ruling or a similar linear ruling with
about the same number of fringes is placed on top of this
interferogram, a moiré fringe appears (see Chapter 9). This
moiré represents the interferogram with the linear carrier
removed. The phase of this interferogram can be changed by
moving the superimposed linear ruling. The phase changes by
an amount equal to 2π if the linear ruling is moved perpen-
dicular to the fringes a distance equal to its period. This phase-
shifting scheme has been described by Kujawinska et al. (1991)
and Dorrío et al. (1995a,b). The Ronchi ruling is placed on top
of the interferogram to produce multiplication of the interfer-
ogram irradiance by the ruling transmission. In principle, this
ruling can be implemented by computer software, but infor-
mation about very high spatial frequencies must be stored in
the computer memory, thus making the system quite ineffi-
cient. It is advisable, then, to use a real Ronchi ruling and
perform spatial filtering of the high frequencies before the light
detector. The low-pass filtering can be performed by defocusing
the lens to form an interferogram image on the light detector.

7.2.6 Frequency Changes in 
the Laser Light Source

Another method for producing the phase shift is to shift the
frequency of the laser light source. This shift can be done in
two possible ways, one of which is to illuminate the interfer-
ometer with a Zeeman frequency split laser line. The frequency
of the laser is split into two orthogonally polarized output
frequencies by means of a DC magnetic field (Burgwald and
Kruger, 1970). The frequency separation of the two spectral
lines is of the order of 2 to 5 MHz in a helium–neon laser. In



the interferometer system, the two lines travel different paths
and the plane of polarization of one of them is rotated to
produce the interference. Another method is to use an unbal-
anced interferometer (i.e., one with a large optical path differ-
ence) and a laser diode for which the frequency is controlled
by an injected electrical current, as proposed by Ishii et al.
(1991) and later studied by Onodera and Ishii (1996). This
method is based on the fact that the phase difference in an
interferometer is proportional to the product of the optical path
difference (OPD) and its temporal frequency and that varying
one of them will produce a piston phase change.

7.2.7 Simultaneous Phase-Shift Interferometry

Phase-shifting methods in an environment with vibrations
cannot give good results due to the long time required to take
all the measurements. This problem has been avoided by the
use of interferometer systems in which all the necessary inter-
ferometer frames are taken at the same time (Kujawinska,
1987, 1993; Kujawinska and Robinson, 1988, 1989; Kujawin-
ska et al., 1990). One approach is to use multichannel inter-
ferometers (Kwon, 1984); an interferometer in a Mach–
Zehnder configuration produces three frames at the same
time by means of a diffraction grating. Kwon and Shough
(1985) and Kwon et al. (1987) used radial shear interferom-
eters, also in Mach–Zehnder or triangular configurations,
with a diffraction grating. Bareket (1985) and Koliopoulos
(1991) have also designed other simultaneous or multiple-
channel phase-shift interferometers. The great disadvantage
of these arrangements is the complicated and expensive hard-
ware that is required. Also, exact pixel-to-pixel correlation
between the images is required.

7.3 PHASE-SHIFTING SCHEMES 
AND PHASE MEASUREMENT

We have seen in Chapter 1 that the signal is a sinusoidal
function of the phase, as shown in Figure 1.2. In phase-shifting
interferometers, the wavelength of the signal to be detected is



equal to the wavelength of the illuminating light. The basic
problem is to determine the nonshifted phase difference
between the two waves with the highest possible precision.
This can be done by any of several procedures described here.

The best method for determining the phase depends on
many factors, but primarily on how the phase shift was per-
formed. The phase can be changed in a continuous manner by
introducing a permanent frequency shift in the reference
beam. Some authors refer to this as a heterodyne interferom-
eter. As described by Moore (1973), heterodyne interferometry
has three possible basic approaches: (1) the frequency is per-
manently shifted, and the signal output is continuous; (2) the
phase is changed in a sinusoidal manner (Figure 7.4a) to
obtain the signal shown in Figure 7.4b; or (3) the phase is
changed in a triangular manner (Figure 7.4c) to obtain the
symmetrical signal shown in Figure 7.4d.

Figure 7.4 Signals obtained in phase-shifting interferometry.
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When the synchronous phase-detection algorithms in
Chapter 5 are used, the phase can also be changed in steps,
in a discontinuous manner, to increase or decrease the phase.
The digital phase-stepping method measures the signal val-
ues at several known increments of the phase. The measure-
ment of the signal at any given phase takes some time, due
to the time response of the detector; hence, the phase must
be stationary for a short time in order to take the measure-
ment. Between two consecutive measurements, the phase can
change as quickly as desired in order to get to the next phase
with the smallest delay. One problem with the phase-stepping
method is that the sudden changes in the mirror position can
introduce some vibrations into the system. In the integrating
bucket method, the phase changes continuously, not by dis-
crete steps. The detector continuously measures the irradi-
ance during a fixed time interval, without stopping the mirror;
hence, an average value during the measuring time interval
is measured, as described in Chapter 3. A change of the phase,
thus, can be achieved using any of several different schemes,
as illustrated in Figure 7.5.

Some analog methods can also be used to measure the
relative irradiance phase at different interferogram points —
for example, detection of the zero crossing point of the phase
(Crane, 1969) or the phase-lock method (Moore et al., 1978).
In the zero crossing method, the phase is detected by locating
the phase point where the signal passes through the axis of
symmetry of the function, not really zero, which has a signal
value equal to a. The points crossing the axis of symmetry
can be found by amplifying the signal function to saturation
levels so the sinusoidal signal becomes a square function.
Digital phase-stepping methods are used more extensively
than analog methods, however.

7.4 HETERODYNE INTERFEROMETRY

When the phase shift is continuous, we speak of heterodyne
or DC interferometry. As pointed out before, two equivalent
models can describe the phase shift: (1) a change in the optical
path difference, or (2) a change in the frequency of one of the



two interfering light beams. In this case, the most common
interpretation is that of two different interfering frequencies,
and we consider heterodyning beats. If we measure the relative
phase of these beats at different points over the wavefront, we
obtain the wavefront deformations. The phase of the detected
beats is measured in real time using electronics hardware
instead of by sampling the irradiance (Wyant, 1975; Massie,
1978, 1980, 1987; Massie and Nelson, 1978; Massie et al., 1979;
Sommargren, 1981; Hariharan et al., 1983; Hariharan, 1985;
Thalmann and Dändliker, 1985). The great advantage of this
approach is that a fast measurement is achieved which is
important in many applications, such as dynamical systems.
Beat frequencies of the order of 1 MHz can be obtained, so a
high-speed detector is necessary. A standard television camera
cannot be used; instead, a high-frame-rate image tube (also
called an image dissector tube) can be used.

Smythe and Moore (1983, 1984) proposed an alternative
heterodyne interferometric system in which the beats are not
measured; instead, by means of an optical procedure (not

Figure 7.5 Four different ways to shift the phase periodically.
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described here) that utilizes polarizing optics, two orthogonal
bias-free signals are generated. Each of these two signals
comes from each of the two arms of the interferometer. The
phase difference between these two orthogonal signals is the
phase difference between the two interferometer optical
paths. If we represent these two orthogonal signals in a polar
diagram, one along the vertical axis and the other along the
horizontal axis, the path described in this diagram when the
phase is continually changed is a circle. The angle with respect
to the optical axis is the phase. This heterodyning procedure
can be easily implemented to measure wavefront deforma-
tions in two dimensions.

7.5 PHASE-LOCK DETECTION

In the phase-lock method for detecting a signal, the phase
reference wave is phase modulated with a sinusoidally oscil-
lating mirror (Moore, 1973; Moore et al., 1978; Johnson et al.,
1979; Moore and Truax, 1979). Two phase components — δ0

and δ1sin(ωt) — are added to the signal phase, φ(x,y). One of
the additional phase components being added has a fixed
value and the other a sinusoidal time oscillation. Both com-
ponents are independent and can have any desired value.
Omitting the x,y dependence for notational simplicity, the
total time-dependent phase is:

(7.6)

thus, the signal is:

(7.7)

The phase modulation is carried out only in an interval
smaller than π, as illustrated in Figure 7.6. The output signal
can be interpreted as the phase-modulating signal, after being
harmonically distorted by the signal to be detected. This har-
monic distortion is a function of the phase (φ), as shown in
Figure 7.7. This function is periodic and symmetrical; thus,
to find the harmonic distortion using Equations 2.6 and 2.7,
this function can now be expanded in series as:

φ δ δ π+ +0 1 2cos( )ft
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(7.8)

where:

(7.9)

Then, making the variable substitution θ = 2πft, we can show
that:

(7.10)

Figure 7.6 Phase lock detection of the signal phase.

Figure 7.7 Output of an harmonically distorted signal, where δ =
0.75π.
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On the other hand, the Bessel function of the first kind, of
order n, is given by:

(7.11)

Using this expression in Equation 7.10, we obtain:

(7.12)

Hence, the output signal is given by:

(7.13)

where ω = 2πf. The first part of this expression represents
harmonic components of even order, and the second part rep-
resents harmonic components of odd order.

Let us now assume that the amplitudes of the phase
oscillation component δ1sin(ωt) are much smaller than π.
Then, if we adjust the δ0 component to a value such that φ +
δ0 = nπ, then sin(φ + δ0) is zero and only even harmonics
remain. This effect is illustrated in Figure 7.6, near one of
the minima of the signal s(x,y). This is done in practice by
slowly changing the value of the phase component δ0 while
maintaining the oscillation δ1 sin(ωt) until the minimum
amplitude of the first harmonic (fundamental frequency) is
obtained. We now have φ + δ0 = nπ, and because the value of
δ0 is known the value of φ has been determined.

This method can also be used at the inflection point for
the sinusoidal signal function (Figure 7.7) by changing the
fixed phase component until the first harmonic reaches its
maximum amplitude. From Equation 7.12 we obtain:

(7.14)
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Thus, because the Bessel function values are known, if the
value of δ is also known, the signal phase can be determined
if the ratio of the amplitudes of the fundamental component
to the second harmonic component is measured. This mea-
surement can be performed analogically by means of elec-
tronic hardware. Matthews et al. (1986) used this method
with a null detection method instead of a maximum detection
procedure. One disadvantage of this method is that a two-
dimensional array of detectors cannot be used. A single detec-
tor must move to scan the entire picture.

7.6 SINUSOIDAL PHASE 
OSCILLATION DETECTION

Sasaki and Okasaki (1986a,b) and Sasaki et al. (1987) proposed
a sinusoidal phase-modulating interferometer in which the ref-
erence wave is phase modulated with a sinusoidally oscillating
mirror, as in the phase-lock method just described. The main
difference is that the phase determination is performed with a
digital sampling procedure. The modulated phase is:

(7.15)

which differs from Equation 7.6 in that the constant phase
value is not present and an extra term (θ) has been added.
The value of θ is the phase of the phase-shifter oscillation at
t = 0. It will be shown later that θ = 0 is not the best value.
Sasaki and Okasaki (1986a) added an extra random phase
term n(t) to this expression to consider the presence of mul-
tiplicative noise due to disturbing effects such as system
vibrations. They derived the optimum values of the amplitude
(δ) and phase (θ) of the oscillating driving signal by consider-
ing minimization of the effects of noise. For notational sim-
plicity, we did not add this term here; thus, the modulated
signal to be measured is:

(7.16)

This function is periodic but asymmetric (θ = 0) and can be
written as:
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(7.17)

This signal contains a large amount of signal harmonics. A
phase-detecting sampling algorithm different from those
studied in Chapter 6 can be used to take into account the
presence of these harmonics. Four sampling measurements
with 90° separation and interval averaging (as described in
Chapter 2) are used. The integrating interval has a width of
90°, equal to the sampling point separation. This integration
eliminates most harmonic content above the third harmonic.
The associated filter function has its first zero at the frequency
of the fourth harmonic. The second and third harmonic
remain. As shown in Figure 7.8, the averaged signal measure-
ments are:

(7.18)
with

(7.19)

and

(7.20)

Figure 7.8 Interval integrating sampling of harmonic distorted
signal at four points.
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where T is the signal period.
Sasaki and Okasaki (1986a) found the expressions for Ci

to be:

(7.21)

and

(7.22)

and the values of Si to be:

(7.23)

and

(7.24)

The signal phase can then be proved to be:

(7.25)

and the optimum values of δ and θ are δ = 0.78π = 2.45 and
θ = 56°.

According to Sasaki et al. (1987), this interferometric
phase demodulation system yields a measurement accuracy
of the order of 1.0 to 1.5 nm. Sasaki et al. (1990a) used a laser
diode as a light source with a reference fringe pattern and
electronic feedback to the laser current. In this manner, they
eliminated noise due to variations in the laser intensity and
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to object vibrations. Zhao et al. (2004) used a charged-coupled
device (CCD) as an image sensor to integrate the light. By
changing the injection current in the laser diode light source,
its frequency can be shifted to change the interference phase.
Sinusoidal phase-modulating schemes can be implemented in
Twyman–Green and Fizeau interferometers (Sasaki et al.,
1990b).

7.7 PRACTICAL SOURCES OF PHASE ERROR

In Chapter 5, we studied some sources of systematic and
random error produced by algorithm calculations when some
important sources of instrument error must be taken into
account. In this section, we describe some other practical
sources of phase error that might be present in phase-shifting
interferometers.

7.7.1 Vibration and Air Turbulence

Two important sources of error in phase-shifting interferom-
etry are vibration and air turbulence. Their nature and con-
sequences have been studied by many researchers (e.g.,
Kinnstaetter et al., 1988; Crescentini, 1989; Wingerden et al.,
1991; de Groot, 1995; de Groot and Deck, 1996; Deck, 1996).
It is desirable to apply as many preventive measures as pos-
sible in order to the reduce these two disturbing factors to a
minimum. If the vibration frequency is high enough, with an
average period higher than the integration time of the detec-
tor (which is of the order of 1/60th of a second), then the
interference fringes are washed out, their contrast reduced. 

Using an approach similar to the mathematical treatment
for phase-lock and sinusoidal phase oscillation detection, de
Groot and Deck (1996) studied the effects of noise by consider-
ing the signal to be phase modulated with the noise, as follows:

(7.26)

This expression is not restricted to any particular case of
vibrational noise; however, some insight can be gained by

s t a b n t( ) cos ( )= + + +( )α φ



assuming that the noise is of a sinusoidal nature, with ampli-
tude δ and phase offset θ, as follows:

(7.27)

In a linear approximation, if the noise is not sinusoidal
but the amplitudes are small, we can sum the contributions
from each of the Fourier components of the vibration (de Groot
and Deck, 1996). When the noise amplitudes are not small,
nonlinear couplings between these components can occur. In
general, the phase of the noise vibration is not coherent but
varies at random; thus, it is more logical to express the phase
error as the root mean square (rms) value of the disturbed
phase. This rms error varies sinusoidally with the phase of
the signal and has twice the frequency of the signal.

Numerical simulations have been performed by de Groot
and Deck (1996) to calculate the effect of vibrational noise for
several phase-detecting algorithms. Figure 7.9 shows the rms
error for two of these algorithms. In the figure, we can observe
the following general, interesting facts that are valid for most
algorithms:

Figure 7.9 Vibrational root mean square (rms) error for two dif-
ferent algorithms: (a) three sampling points algorithm, and (b) seven
sampling points algorithm. (From de Groot de, P. and Deck, L.L.,
Appl. Opt., 35, 2173–2181, 1996. With permission.)

0.05

0.04

0.02

0.03

0.01

0
0 1 2 3

rm
s

er
ro

r 
in

 w
av

el
en

gt
hs

Vibration frequency/sampling frequency Vibration frequency/sampling frequency

rm
s 

er
ro

r 
in

 w
av

el
en

gt
hs

0
0

0.01

0.02

1

0.03

0.04

0.05

2 3

(a) (b)

s t a b ft( ) cos cos( )= + + + +( )α φ δ π θ2



1. The maximum vibrational sensitivity occurs when
the vibration has a frequency equal to one half the
sampling frequency.

2. Zeros of the sensitivity occur at vibration frequencies
that are multiples of the sampling frequency.

3. The sensitivity decreases exponentially for high
vibrational frequencies. If the frequency is extremely
high, only the contrast is reduced, but its dependence
on the signal phase is lost.

Brophy (1990) studied the effect of additive noise, particularly
mechanical vibrations with frequencies that were extremely
high or of the order of the sampling rate.

An immediate practical consequence of these findings is
that, to reduce the effect of the vibrations, the sampling rate
has to be as high as possible with respect to the vibration
frequency. Unfortunately, high sampling rates require light
detectors with a low integration time, which are quite expen-
sive. As an alternative, Deck (1996) proposed an interferom-
eter with two light detectors, one with a fast integration time
and the other with a low integration time, to reduce the
interferometer sensitivity to vibrations. Another approach to
eliminating the effect of vibrations is to take the necessary
irradiance samples at the same time, not in sequence (Kwon,
1984; Kwon and Shough, 1985; Kujawinska, 1987; Kujawin-
ska and Robinson, 1988, 1989; Kujawinska et al., 1990).

7.7.2 Multiple-Beam Interference 
and Frequency Mixing

Signal harmonics can also occur in the interference process
if more than two beams are interfering. In many cases, this
effect is due to the nature of the interferometer; in other cases,
it is accidental. Typical examples of multiple-beam interfer-
ometers include the Ronchi test and Newton or Fizeau inter-
ferometers with high-reflection beam splitters; however, even
if the beam splitter in the Fizeau interferometer has a very
low reflectance, it is impossible to reduce multiple reflections
to absolute zero. Multiple reflections can occur by accident,
due to spurious unwanted reflections. The influence of these



spurious reflections has been considered by several authors (e.g.,
Bruning et al., 1974; Schwider et al., 1983; Hariharan et al.,
1987; Ai and Wyant, 1988; Dorrío et al., 1996).

In Chapter 1, we studied a signal (irradiance) due to two
beams with amplitudes A1 and A2. If, following Schwider et
al. (1983) and Ai and Wyant (1988), we add a third coherent
beam with amplitude B due to the coherent noise, we obtain:

(7.28)

where φ is the signal phase, α is the sampling reference
function phase, and β is the extraneous coherent wave phase.
The phases of these beams are referred to the same origin as
the sampling reference functions. We also assume an absence
of detuning, so the reference wavefront can be considered to
have the same phase as the reference sampling function.
Thus, the signal (irradiance) in the presence of coherent noise
is given by:

(7.29)

or

(7.30)

Now we will study the particular case of algorithms with
equally and uniformly spaced sampling points. In this case,
the phase of the signal without coherent noise, from Equation
5.19, is:

(7.31)
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where αn is the value of phase α for sampling point n. Taking
into account the presence of the coherent noise, we have:

(7.32)

Thus, using Equations 5.11, 5.13, and 5.14, we find:

(7.33)

and the phase error is given by:

(7.34)

This phase error is a periodic, although not exactly sinusoidal,
function of the signal phase. Its period is equal to that of the
signal frequency. This phase error is illustrated in Figure 7.10.

This phase error can thus be substantially reduced by
averaging two sets of measurements with a phase difference
(φ – β) of π between them. This is possible only if another
phase shifter is placed in the object beam. A phase shift in the
reference beam does not change the phase difference φ – β. Ai
and Wyant (1988) pointed out that, if the spurious light comes
from the reference arm in the interferometer or from the test
surface, this method does not work, and they proposed an
alternative way to eliminate the error.

In a Fizeau interferometer, as explained by Hariharan
et al. (1987), the spurious light appears to be due to multiple
reflections between the object being analyzed and the refer-
ence surface (beam splitter). In this case, the error can be
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minimized by proper selection of the sampling algorithm to
eliminate the signal harmonics being generated.

Speckle noise is another kind of coherent noise that can
become important in some applications, such as, for example,
speckle interferometry. This kind of noise can also be reduced
in some cases (Creath, 1985; Slettemoen and Wyant, 1986).

7.7.3 Spherical Reference Wavefronts

If the reference wavefront in phase-shifting interferometry is
not planar it is spherical, as in the spherical Fizeau interfer-
ometer, where the spherical surface being analyzed is shifted
to introduce the phase shift. If the phase shift at the center
of the fringe pattern is 90°, the phase shift at the edge of the
pupil would be slightly smaller. A phase error is introduced,
as pointed out by Moore and Slaymaker (1980) and Schwider
et al. (1983); nevertheless, this error is not large. For spherical
test surfaces with numerical apertures smaller than 0.8, the
phase error introduced can be smaller than one hundredth of
a wavelength. If this error becomes important, it can be min-
imized using Carré’s algorithm.

Figure 7.10 Phase error due to the presence of spurious coherent
light beams.
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7.7.4 Quantization Noise

As we studied in Section 3.4, in the digitization of images the
number of bits used to digitize the image defines the number
of gray levels. A simple method to evaluate the quantization
error has been provided by Brophy (1990), who demonstrated
a correlation between signal samples taken 90° apart. He
showed that, for algorithms for which samples are taken at
90° intervals, the rms error (σ) due to quantization into Q
gray levels is given by:

(7.35)

where a and b are the bias and amplitude, respectively, of the
signal. For example, if 8 bits are used, Q is equal to 256 gray
levels. Then, if a/b is equal to one, the rms quantization error
(σ) is equal to 0.00036 wavelengths, or about λ/2777. This
value is so small that it is difficult to reach this limit. Zhao
and Surrel (1997) made a detailed study of quantization noise
for several algorithms.

Of course, the fringe contrast is not always perfect, and
the ratio of a/b can be much larger than one. To avoid this
error, the signal must cover as much of the detector dynamic
range as possible.

7.7.5 Photon Noise Phase Errors

Other random phase errors include, for example, photon noise
(Koliopoulos, 1981; Brophy, 1990; Freischlad and Koliopoulos,
1991). This error occurs due to fluctuations in the arrival
frequency of the photons to the light detector when the number
of photons is not large. In other words, this noise appears
where the signal is relatively small.

7.7.6 Laser Diode Intensity Modulation

When a phase shift is produced by phase current modulation
of a laser diode in an unbalanced interferometer an amplitude
modulation also occurs simultaneously with the phase modu-
lation, as described in Section 7.2.6. The phase error introduced

σ = a
bQ3



by this undesired intensity modulation has been studied by
Onodera and Ishii (1996) and by Surrel (1997), assuming that
the irradiance variation is linear with the phase shift.

7.8 SELECTION OF THE REFERENCE SPHERE 
IN PHASE-SHIFTING INTERFEROMETRY

When digitizing an interferogram with a detector array, the
sampling theorem requires the minimum local fringe spacing
or period to be greater than twice the pixel separation; thus,
each detector has a minimum fringe period that can be
allowed. This minimum period, in turn, is set by the wavefront
asphericity and the testing method. This section discusses the
optimum defocusing and tilt necessary to test aspherical wave-
fronts for which the asphericity is as large as possible in a
non-null-test configuration (Malacara-Hernández et al., 1996).

A general expression for an aspherical wavefront defor-
mation, W(S), for different focus shifts and only a primary
spherical aberration is:

(7.36)

where a is the defocusing term and b is the primary spherical
aberration coefficient. Figure 7.11 shows the wavefront defor-
mation (W) values for three different focus settings to be
described later. The first derivative, W′(S), with respect to S
is the radial slope of this wavefront, as given by:

(7.37)

These radial derivatives for the three focus positions are illus-
trated in Figure 7.12. If we plot this wavefront slope, W′(S),
any change in the focus or in the amount of tilt can be easily
represented in this graph. As shown in Figure 7.13, a tilt is
a vertical displacement of the curve, and a change in the focus
is represented by a small rotation of the graph about the
origin. The wavefront can be measured with respect to many
reference spheres by selection of the defocusing coefficient a.
Here, we will study the three main possibilities.
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Figure 7.11 Aspherical wavefront deformations at paraxial focus,
best focus, and marginal focus with primary spherical aberration.

Figure 7.12 Wavefront radial slopes at the paraxial focus, best
focus, and marginal focus for a wavefront with primary spherical
aberration. The maximum radial slope for the best focus is at Sb

and at the edge of the pupil.

Figure 7.13 Tilt and defocus effect on the derivative of a wavefront.
A defocus rotates the curve about the origin, and a tilt displaces the
curve vertically.

Paraxial focus

Best focus

Marginal focus

Smax

W

Marginal focus

Best focus
Paraxial focus

Smax

W ′′

Sb

W ′b

W ′p

Defocus

Tilt

dW (S)
dS

S



7.8.1 Paraxial Focus

The paraxial focus is defined by a zero defocusing coefficient
(a = 0), and the slope of the wavefront measured with respect
to a sphere with its center at the paraxial focus is:

(7.38)

Then, the maximum slope of the wavefront at the paraxial
focus  occurs at the edge of the pupil; that is, S = Smax.
Thus,

(7.39)

where Smax is the semidiameter of the wavefront.

7.8.2 Best Focus

The best focus is defined as the focus setting that minimizes
the absolute value of the maximum radial slope over the pupil.
This maximum slope occurs at the edge (Smax) of the pupil
and at some intermediate pupil radius (Sb) but with opposite
values. Opposite signs but the same magnitude for the radial
slope means that the transverse aberrations TA(Sb) and
TA(Smax) are also equal in magnitude but with opposite signs.
This is the condition for the waist of the caustic; hence, the
optimum or best focus occurs when the center of the reference
sphere is located at the waist of the caustic, as illustrated in
Figure 7.14. Thus, we can write:

(7.40)

After some algebraic manipulation using this condition for
the first derivative as well as the condition that the second
derivative of W is zero, it is possible to show that at this focus
setting the defocusing coefficient (a) is related to the primary
aberration coefficient (b) by the expression:

(7.41)
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Solving this equation, it is possible to find that at the best
focus the defocusing coefficient is given by:

(7.42)

Then, it is easy to see that the ratio between the maximum
wavefront deformation at the paraxial focus and at the best
focus positions is a constant given by:

(7.43)

7.8.3 Marginal Focus

The wavefront slope  at the marginal focus and the
edge of the pupil has to be zero; thus,

(7.44)

Hence, the defocusing coefficient (a) at the marginal focus is:

(7.45)

Figure 7.14 Aspherical wavefront and its caustic, showing the
paraxial, marginal, and best focus.
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and the first radial derivative of the wavefront at the marginal
focus is:

(7.46)

Then, the maximum slope value of this wavefront deformation
is given by equating  to zero the second radial derivative with
respect to S. Thus, we obtain a value for the radial position
(Sm) of this maximum wavefront deformation at the marginal
focus:

(7.47)

so that

(7.48)

The ratio between the slope maxima at the paraxial and at
the marginal foci can be shown to be:

(7.49)

7.8.4 Optimum Tilt and Defocusing 
in Phase-Shifting Interferometry

The optimum tilt magnitude and reference sphere (defocus-
ing) for the different interferogram analysis methods can now
be estimated using these results. The sampling theorem
requires the minimum local fringe spacing or period to be
greater than twice the pixel separation. Thus, each detector
has a minimum fringe period that can be allowed (see Table
7.1). This minimum period, in turn, is set by the wavefront
asphericity and the testing method, as pointed out by Creath
and Wyant (1987). The fringe period, s(S), or its fringe fre-
quency, f(S), in the interferogram is related to the wavefront
slope by the relation:
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(7.50)

On the other hand, from geometrical optics, the slope,
W′(S), of the wavefront is related to the ray transverse aber-
ration by:

(7.51)

where r is the radius of curvature of the reference wavefront.
The maximum wavefront slope, , with a paraxial focus
setting is related to the maximum wavefront deformation with
the focus setting Wp max by means of the relation:

(7.52)

The maximum fringe frequency and the minimum fringe
period (spacing) at this paraxial focus (without any tilt) occurs
at the edge of the fringe pattern and is given by:

TABLE 7.1 Relative Minimum Fringe Periods for Wavefronts and 
Three Methods for Interferometric Analysis

Interferometric
Analysis Method

Wavefront
Focus

Wavefront
Tilt

Relative
Minimum

Fringe
Period

Temporal phase-shifting 
techniques

Paraxial None 1.0
Best None 4.0
Marginal None 2.6

Spatial linear carrier 
demodulation

Paraxial Yes 0.5
Best Yes 2.0
Marginal Yes 1.3

Circular spatial circular 
carrier demodulation

Marginal None 2.6

Note: The relative fringe period is defined as the ratio of the minimum fringe
spacing for the focus setting to that of the paraxial focus setting.
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(7.53)

where spmin is the period with fp max, and np is the number of
fringes at the paraxial focus without any tilt.

The condition to maximize the minimum fringe period is
equivalent to minimizing the peak ray transverse aberration,
which occurs at the best focus position. On the other hand,
the best focus position is obtained when the center of the
reference sphere is at the center of the waist of the caustic.
In this case, the maximum fringe frequency and the minimum
fringe spacing are given by:

(7.54)

The ratio sb max/sp max is:

(7.55)

This result tells us that at the best focus position the mini-
mum fringe period or fringe spacing is increased by a factor
of four with respect to the paraxial focus setting. The relative
fringe period will be defined as the ratio of the minimum
fringe spacing for the focus setting under consideration to
that of the paraxial focus setting. This is a useful advantage
when testing aspheric wavefronts.

7.8.4.1 Temporal Phase-Shifting Techniques

In this case, no tilt is necessary but the focus can be adjusted
with any value. Let us consider the following three focus
possibilities:

1. Paraxial focus — In this case, the minimum fringe
period is defined as the unit (η = 1). A phase-shifting
method can be used, but to obtain the maximum
asphericity capacity this focus setting is not the opti-
mum.

f
s

W W
S

n
S

p
p

p p p
max

min

max max

max max
= = ′ = =1

4 4
λ λ

f
s

W
b

b

b
max

min

max= = ′1
λ

s
s

b

p

max

min
= 4



2. Best focus — At the best focus, we obtain the maximum
possible value for the local minimum fringe period of
all configurations. This, then, is the optimum focus for
testing the maximum degree of asphericity.

3. Marginal focus — With this focus setting, the relative
minimum fringe period is equal to 2.6 — better than
the paraxial focus but worse than the best focus.

7.8.4.2 Spatial Linear Carrier Demodulation

These methods (described further in Chapter 8) require the
introduction of a large linear carrier in the x direction. The
minimum magnitude of this carrier is such that the phase
increases (or decreases) in a monotonic manner with x. This
condition is necessary to avoid closed loop fringes. This is
possible if a tilt is introduced so that W′ is always positive,
as shown in the plots in Figure 7.15. In this case, the mini-
mum slope is zero, so, ideally, a tilt larger than this must be
used, but this is the minimum value. Three focus possibilities
exist:

1. Paraxial focus — If a tilt is introduced at the paraxial
focus in order to introduce the linear carrier, the
maximum local wavefront slope is increased by a
factor of two, reducing the relative minimum fringe
period to 0.5. A demodulation of these fringes with a
spatial carrier can be performed, but this is not the

Figure 7.15 Effect on the radial wavefront slope of introducing
tilt in a wavefront until the derivative of the wavefront is positive
everywhere.
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ideal amount of defocusing for achieving the maxi-
mum possible local minimum fringe period to obtain
the maximum testing asphericity capacity.

2. Best focus — If a tilt is introduced at the best focus,
we obtain the maximum possible local minimum
fringe period attainable with a linear carrier, as
shown in Figure 7.16. This is the ideal configuration
for analyzing the fringe pattern with a modulated
linear carrier.

3. Marginal focus — If the proper tilt is introduced at
the marginal focus, a linear carrier demodulation
scheme can be used; however, this is not the ideal
configuration for this method. The relative fringe
period is now equal to 1.2.

7.8.4.3 Spatial Circular Carrier Demodulation

(This method is described in detail in Chapter 8.) Here, no
tilt is introduced, because the circular symmetry must be
preserved. A focus term must be selected so the phase mono-
tonically increases (or decreases) from the center toward the
edge of the interferogram. From the three focus positions
described here, only the marginal focus position is acceptable

Figure 7.16 Wavefront and its radial slope at the best focus
position, showing where the minimum slope occurs.
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as a minimum. Ideally, a defocusing larger than this amount
should be used. At the marginal focus, the wavefront radial
slope does have any sign changes along the interferogram
semidiameter; thus, this is the configuration to be used with
radial carrier modulation. The relative minimum fringe
period is equal to 2.6.
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8

Spatial Linear and
Circular Carrier Analysis

8.1 SPATIAL LINEAR CARRIER ANALYSIS

In phase-shifting techniques several frames must be mea-
sured. This requires shifting the phase by means of piezoelec-
tric crystals or any other equivalent device. In the spatial
carrier methods described in this chapter, only a single frame
is necessary to obtain the wavefront, although, if desired,
several wavefronts can be averaged to improve the result.
These two basic methods have several important practical
differences:

1. In phase-shifting methods, at least three interfero-
gram frames are needed. In spatial-carrier methods,
only one is necessary.

2. In phase-shifting interferometry, three or more
frames must be taken simultaneously to avoid the
effects of vibrations. In spatial-carrier analysis, vibra-
tions are not a problem, as only one frame is taken.

3. In phase-shifting methods, the sign of the wavefront
deformations is determined. In spatial carrier meth-
ods, the sign cannot be determined, as only one frame
is taken. To determine the sign it is necessary to know
the sign of at least one of the aberration wavefront



components — for example, the sign of the tilt intro-
ducing the carrier.

4. In phase-shifting methods, hardware requirements are
greater, as an accurately calibrated phase shifter is
needed. In spatial carrier methods, more sophisticated
mathematical processing by computer is necessary.

5. If a stable environment, free of vibrations and tur-
bulence, is available (which sometimes is impossi-
ble), greater accuracy and precision are possible with
phase-shifting methods than with spatial carrier
methods.

8.1.1 Introduction of a Linear Carrier

A large tilt about the y-axis in an interferogram can be con-
sidered to be a linear carrier in the x direction. Interferograms
with a spatial linear carrier can be analyzed to obtain the
wavefront shape by processing the information in the inter-
ferogram plane (space domain) or in the Fourier plane (fre-
quency domain). We will study both methods in this chapter.
For reviews on the analysis of interferograms using a spatial
carrier, see Takeda (1987), Kujawinska (1993), and Vlad and
Malacara (1994).

The irradiance in an interferogram with a large tilt along
a line parallel to the x-axis is a perfectly sinusoidal function
if the two interfering wavefronts are flat. In other words, if
the reference wavefront is flat and the wavefront under anal-
ysis is also flat, then the fringes are straight, parallel to the
y-axis, and equidistant. If the wavefront being analyzed is not
perfect, then this irradiance function is a nearly sinusoidal
function with phase modulation. The phase modulation is due
to the wavefront deformations, W(x,y). If a tilt (θ) about the
y-axis is introduced between the two wavefronts, then the
signal (irradiance), s(x,y), can be written from Equation 1.4 as:

(8.1)
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where the coefficients a and b can vary for different points on
the interferogram; that is, they are functions of x and y, but
for notational simplicity this dependence has been omitted.
The carrier spatial frequency introduced by the tilt is f = sinθ/λ.
An example of an interferogram with a linear carrier is illus-
trated in Figure 8.1. Here, the wavefront deformations, W(x,y),
are for the nontilted wavefront, before introduction of the
linear carrier. To be more precise, a wavefront is said to have
no tilt about the x-axis when the maximum positive or nega-
tive slopes in the x direction have the same magnitudes. The
phase-modulating function W(x,y) can be obtained using stan-
dard communication techniques that are quite similar to holo-
graphic techniques.

To achieve this demodulation it is necessary that, for a
fixed value of y inside the aperture, the phase-modulating
function W(x,y) increases in a monotonic manner with the
value of x. This is possible only if the tilt (θ) between the two
wavefronts is chosen so that the slope of the fringes does not
change sign inside the interferogram aperture. An immediate
consequence of this is that no closed fringes appear in the
interferogram, and no fringe in the interferogram aperture
crosses any scanning line parallel to the x-axis more than
once. Thus, if the tilt has a positive value, we have the fol-
lowing condition:

(8.2)

without any change in sign for all points inside the interfer-
ogram, or, equivalently, we have:

Figure 8.1 Interferogram with a linear carrier.
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(8.3)

This result can be interpreted by saying that the slope (tilt)
of the reference wavefront has to be greater than the maxi-
mum (positive) slope of the wavefront under analysis in the
x direction. If this wavefront is almost flat, the tilt can be
almost anything between a relatively small value and the
Nyquist limit (two pixels per fringe). On the other hand, Macy
(1983) and Hatsuzawa (1985) showed that increasing the tilt
increases the amount of measured information but reduces
the precision. They found that an optimum value for the tilt
is about four pixels per fringe.

An interesting point of view is to regard an interferogram
with a linear carrier as an off-axis hologram. Then, Equation
8.3 is equivalent to the condition for the image spot of the
first order of diffraction to be separated, without any overlap,
from the zero-order point at the optical axis. A problem, when
setting up the interferogram, is the selection of a tilt angle
(θ) that satisfies this condition. This tilt does not have to be
very precise, but it always better to be on the high side, as
long as the Nyquist limit for the detector being used is not
exceeded (as is described in detail later in this chapter). In
the case of aspherical surfaces, it is easy to approach the
Nyquist limit due to the uneven separation between the
fringes. In this case, we are bounded between the lower limit
for the tilt (the condition imposed by Equation 8.3) and the
upper limit (imposed by the Nyquist condition). The lower
limit for the tilt in Equation 8.3 was derived from purely
geometrical considerations; however, in any real case the
finite size or any uneven illumination of the pupil widens the
diameter of the spectrum due to diffraction. The zero-order
image is not a point but an Airy diffraction image (if the pupil
is evenly illuminated), and the first-order image is the con-
volution of this Airy function with the geometrical image. This
effect due to the finite size of the pupil introduces some arti-
facts in the results, primarily near the edge of the interfero-
gram, but they can be minimized by any of several procedures
described in Section 8.1.3.
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The approximate minimum required amount of tilt can
be experimentally obtained by several different methods; for
example:

1. One approach is to first adjust the interferogram tilt
to obtain the maximum rotational symmetry. The tilt
is then slowly introduced until the minimum local
slope of a fringe in the interferogram has a value of
zero (parallel to the x-axis) at the edge of the fringe,
as shown in Figure 8.2. The magnitude of this tilt
can be found from the interferometer adjustment.

2. Another procedure is to take the fast Fourier trans-
form of the irradiance and to adjust the tilt in an
iterative manner until the first-order lobe is clearly
separated from the zero-order lobe. Then, the dis-
tance from the centroid of the first order to the zero
order is the minimum amount of tilt to introduce,
from a geometrical point of view. Later, we will see
that a slightly greater tilt might be necessary to avoid
phase errors due to diffraction effects.

8.1.2 Holographic Interpretation 
of the Interferogram

An interferogram with a large linear carrier is formed by inter-
ference of the wavefront to be measured with a flat wavefront
forming the angle θ between them, as shown in Figure 8.3.
This interferogram can be interpreted as an off-axis hologram
of the wavefront W(x,y). The similarity between a hologram and
an interferogram has been recognized for many years (Horman,

Figure 8.2 Interferogram on which the minimum fringe slope is
zero.



1965). The wavefront can be reconstructed by illumination of
the hologram with a flat reference wavefront with amplitude
r(x,y) and tilt θr. This reference reconstructing wavefront does
not necessarily have the same inclination (θ) as the original
flat wavefront used when taking the hologram. It can be almost
the same as that shown in Figure 8.4, but it can be different
if desired. It will be seen later that the condition in Equation
8.3 is still valid even when these angles are very different.

The complex amplitude, r(x,y), of the reconstructing ref-
erence wavefront can be written as:

(8.4)

where fr = sinθr/λ. Thus, the amplitude, e(x,y), in the hologram
plane is given by:

(8.5)

Figure 8.3 Recording of a hologram.
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These diffracted wavefronts, as expressed here, are completely
general and are independent of the relative magnitude of the
angles used during hologram formation and reconstruction.

These wavefronts and their frequency distribution in the
Fourier plane (spectra) will now be examined. To begin, let
us first remember that the phase (φ) of the sinusoidal function
expφ, its frequency (f), and the angular spatial frequency (ω)
are related by:

(8.6)

where a positive slope for the phase and hence for the wave-
front is related to a positive spatial frequency. Thus, according
to this sign convention, the directions of the axes on the
Fourier plane must be opposite those on the interferogram.
The linear carrier spatial frequency introduced by the tilt in
the flat wavefront used when forming the hologram is:

Figure 8.4 Reconstruction of a wavefront with a hologram.
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(8.7)

The spatial frequency spectrum produced by the wavefront
W(x,y) in a direction parallel to the x-axis is given by:

(8.8)

Thus, the spatial frequency is directly proportional to the wave-
front slope in the x direction at the point (x,y). The first term
in Equation 8.5 represents the flat nondiffracted wavefront
with tilt θr. The spatial frequency of this term, with zero order,
is the reference frequency fr, and it has a delta distribution in
the Fourier plane. As pointed out before, this frequency is not
necessarily equal to that of the carrier, as obtained with Equa-
tion 8.6 and shown in Figure 8.4, and is given by:

(8.9)

This reference spatial frequency was defined when we deter-
mined the multiplying function r(x,y) or, in other words, the
angle for the reference wavefront in Equation 8.4.

The second term, with order minus one, represents a
wave with deformations conjugate to those of the wavefront
being reconstructed. The spatial frequency of this function in
a direction parallel to the x-axis is f–1(x,y), given by:

(8.10)

Its deviation from this average value depends on the wave-
front slope in the x direction at the point (x,y) on the inter-
ferogram — that is, in the frequency fW(x,y).

The third term, with order plus one, represents the wave-
front under analysis and has a frequency of f+1(x,y) in the x
direction, given by:

(8.11)
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8.1.3 Fourier Spectrum of the 
Interferogram and Filtering

The expression for the spatial frequency content in the inter-
ferogram derived in the preceding section gives us the basis
for an understanding of the Fourier spectrum. As pointed out
before, this spectrum is geometrical; that is, this model does
not take into account diffraction effects due to the pupil
boundaries nor any unevenness in the pupil illumination.
From Equation 8.8 we can see that the half-bandwidth f0

along the x-axis for the first-order lobe is:

(8.12)

as illustrated in Figure 8.5a. Let us now assume that a spatial
linear carrier with frequency f along the x-axis is introduced.
The maximum and minimum frequencies, fmax and fmin, along
the x-axis, respectively, are:

(8.13)
and

(8.14)

When the minimum tilt required by Equation 8.3 is introduced,
we obtain a spectrum like that shown in Figure 8.5b, with a
minimum fringe frequency equal to zero (fringe slope zero).

It is desirable to set the linear carrier spatial frequency
to its minimum allowed value if a highly aberrant wavefront
is being measured in order to avoid the maximum fringe
frequency and exceeding the Nyquist limit. On the other hand,
if the wavefront has small deformations as compared to the
wavelength, it is convenient (as is described in the next sec-
tion) to select a spatial carrier with a spatial frequency much
larger than the required minimum, as shown in Figure 8.5c.

The minimum allowed linear carrier spatial frequency
(f) has been found with the assumption that we have a sinu-
soidal phase-modulated signal with no harmonic components
(equivalently, we can say that the carrier is not sinusoidal,
but distorted). Nevertheless, quite frequently the signal (or
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carrier) contains harmonics, such as when measuring Ronchi
patterns, for multiple-beam interferograms, or for light detec-
tors with nonlinear responses. In such cases, the maximum
allowed linear carrier is three times the former value, as
illustrated in Figure 8.5d.

It is important to remember that the finite size of the
detector element acts as a low-pass filter, removing some of
the harmonic frequencies before the sampling process is fin-
ished. This low-pass filtering can be quite important in pre-
venting some high-frequency components from exceeding the
Nyquist limit, thus producing aliasing noise.

If the linear carrier in the interferogram is larger than
the allowed minimum, the first-order lobe can always be iso-
lated with a suitable band-pass filter, without regard to the
selected reference frequency. For practical reasons that will

Figure 8.5 Spatial frequency distribution along the x-axis in an
interferogram with a linear carrier slightly larger than the minimum.
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become clear later in this chapter, it is desirable for simplicity
to use a low-pass filter — in other words, a band pass centered
at the origin.

Figure 8.6 shows the minimum widths of the low-pass
bands that should be used when filtering three common Fou-
rier spectrum distributions. Here, a reference frequency equal
to the carrier frequency has been assumed. We can see that,
in order to achieve good low-pass filtering, we must determine
the values of two parameters beforehand: the carrier fre-
quency (f) and the band half-width (f0) of the first-order lobe.
Alternatively, we must determine the maximum and mini-
mum fringe frequencies, fmax and fmin, respectively. Several
methods are available for obtaining these values (Kujawin-
ska, 1993; Lai and Yatagai, 1994; Li and Su, 2001); for exam-
ple, we can:

Figure 8.6 Minimum carrier frequency for three common cases.
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1. Directly set or measure these parameters when
adjusting the interferometer to obtain the desired
interferogram.

2. Calculate the fast Fourier transform of the interfer-
ogram and isolate the first-order lobe, either auto-
matically or via operator intervention.

3. Automatically estimate the fringe frequencies along
the x-axis with a zero crossing algorithm after high-
pass filtering is used to remove constant or very low-
frequency terms.

4. Calculate the wavefront using a simple rough estima-
tion of the desired parameters, even if some errors
are introduced. A better approximation for the desired
parameters can be obtained from the calculated wave-
front, and a new iteration will produce better results.

Let us assume that the signal is sinusoidal and phase
modulated and has no harmonic components, either because
they are not present in the original signal or because they
have been filtered out by the sampling procedure with finite-
size detectors (pixels). In this case, the reference frequency
(fr) can deviate from the carrier frequency (f) without intro-
ducing any errors if the following two conditions are met:

1. The reference frequency is within the limits:

(8.15)

where f0 is the band half-width of the first lobe.
2. The filtering band half-width is slightly smaller than

the selected reference frequency, which can be larger
than f0.

It is interesting to note that, if the wavefront deformations
are small so the carrier frequency (f) is much larger than the
band half-width (f0), this condition is transformed into:

(8.16)
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In conclusion, if the signal is not distorted and the
carrier frequency is much larger than the required minimum
(f > f0), then the reference frequency can have any value
larger than half the signal frequency. Even in the presence
of some harmonics, this criterion can help to set a good start-
ing point in an iterative process. The discrete sampling of the
interferogram, in the hologram model, can be considered as
a diffraction grating superimposed on the hologram. Thus,
the Fourier spectrum is split into many copies of the hologram
spectrum, as shown in Figure 8.7. We can see in this figure
how, by increasing the tilt between the two wavefronts, the
carrier frequency is also increased, approaching the Nyquist
limit.

8.1.4 Pupil Diffraction Effects

The pupil of an interferogram is not infinitely extended, but
finite and most of the time circular, and its pupil illumination
can be uneven; thus, our geometrical description of the Fou-
rier spectrum of the interferogram is not complete. The cor-
rect Fourier spectrum can be obtained with the convolution
of the geometrical spectrum with the Airy function, if the

Figure 8.7 Fourier spectrum of a sampled interferogram.
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pupil illumination is even. This increases the width of all
lobes in the spectrum, so the zero-order lobe is simply the
Airy function.

The diameter of the first dark ring of the Airy function
is equal to 1.22/D, where D is the diameter of the pupil. With
the geometrical model, this spatial frequency corresponds to
1.22 tilt fringes. Thus, to obtain more complete separation of
the first- and zero-order lobes, an additional tilt of about two
to three fringes should be added to the minimum required
linear carrier obtained with the geometrical model. It must
be remembered, however, that the rings in the Airy diffraction
pattern extend over a large area; thus, it is frequently conve-
nient to modify the pupil boundaries in some manner so the
rings are damped down, making possible good isolation of the
first-order lobe. This ring damping can be achieved by one of
the following two methods:

1. Extrapolation of the fringes outside the pupil bound-
aries; this procedure is described in detail in Chapter
3.

2. Softening the edge of the pupil with a two-dimensional
Hamming filter, as proposed by Takeda et al. (1982).
The Hanning or cos4 filter function can also be used
with good results (Frankowski et al., 1989; Malcolm
et al., 1989). The one-dimensional Hamming function
was defined in Chapter 3, but a two-dimensional cir-
cular Hamming filter can be written as:

(8.17)

where D is the pupil diameter.

To better understand this, let us consider Figure 8.8, where
we have some one-dimensional signals on the left side and
their Fourier transforms on the right. In Figure 8.8a, an
infinitely extended sinusoidal signal produces the Fourier
transform with only delta functions; in Figure 8.8b, the signal
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is limited in extension, as in any finite-size interferogram.
Each of the delta functions is transformed in a sinc function
for which the width is inversely proportional to the pupil size.
In Figure 8.8c, the signal is no longer sinusoidal but has a
phase modulation. The diffraction effects were minimized by
artificially extending the pupil in both directions with sinu-
soidal signals. In this case, the Fourier transform terms cor-
responding to the orders representing the reconstructed
wavefront and its conjugate wavefront are widened, as we
have seen before in this chapter. Figure 8.8d shows a phase-
modulated signal with a finite extension due to the pupil size.

Diffraction effects can introduce some relatively small
phase errors at the edge of the pupil when the phase is
calculated using phase demodulation in the space domain.
These errors, however, become more important for the Fourier
transform method. Both of these methods are described later
in this chapter.

Figure 8.8 Some discretely sampled signals and their Fourier
transforms: (a) infinitely extended sinusoidal signal, (b) sinusoidal
signal with a finite aperture, (c) phase-modulated signal with
sinusoidal signal on each side to extend it on both sides, and (d)
phase-modulated signal with a finite aperture.
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8.2 SPACE-DOMAIN PHASE DEMODULATION 
WITH A LINEAR CARRIER

The space-domain phase demodulation of interferograms with
a linear carrier had its beginnings with the pioneering work
by Ichioka and Inuiya (1972). Since then, several other phase
demodulation methods have been developed, some of which
are described in the following sections.

8.2.1 Basic Space-Domain Phase
Demodulation Theory

To describe the space-domain phase demodulation method,
let us follow the holographic model, where the three waves
are separated by illuminating (multiplying) the hologram
(interferogram) with a flat reference wave (Equation 8.4) to
obtain Equation 8.5, which can be written as:

(8.18)
where

(8.19)

and

(8.20)

or, using Equation 8.1, we obtain:
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and
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These expressions are equivalent to Equations 5.27 and 5.28
in Chapter 5. An example of the functions zS(x,y) and zC(x,y)
and their low-pass filtered counterparts  and are
illustrated in Figure 8.9. It is interesting to compare these
plots with those in Figure 5.4.

With the holographic model, terms with frequency fr and
frequency 2fr can be eliminated with a mask. In practice
however, these two high-frequency terms are eliminated by
means of a low-pass spatial filter. The filter as well as the
multiplications can be implemented with analog as well as
discrete sampling procedures, as described in the next few
sections.

Once the high-frequency terms are filtered out, we can
easily find the phase at any point x as:

(8.23)

Figure 8.9 Signal along a line in an interferogram with a linear
carrier (a) multiplied by a sine function (b) and cosine function (c).
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The first term on the left side, 2π(f – fr)x, is a residual tilt that
appears if the carrier and reference frequencies are not exactly
equal, but it can be removed easily, if desired, in the final
result. The exact amount of removed residual tilt (a procedure
sometimes referred to as carrier removal) is not important in
most cases; however, in some applications it might be impor-
tant, and several procedures have been designed with this
purpose in mind. Fernández et al. (1998) have provided a
review of this subject and a comparison of several methods.

8.2.2 Phase Demodulation with 
an Aspherical Reference

If the ideal shape of the wavefront being measured is aspher-
ical, this ideal shape is subtracted from the calculated wave-
front deformations to obtain the final wavefront error. A
slightly different alternative procedure can be employed by
using an aspherical wavefront instead of a flat wavefront as
a reference. Let us now study this method to assess its relative
advantages or disadvantages. Because the interferogram can
be interpreted as a hologram of the wavefront W(x,y), with a
reference wavefront with an inclination θ, the flat reference
wavefront can be reconstructed if we illuminate this interfer-
ogram with the wavefront W(x,y). Hence, a null test can be
obtained if we illuminate (reconstruct) with the ideal aspher-
ical wavefront (Wr) as follows:

(8.24)

Thus, we obtain:
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The first term after the equal sign represents the tilted ideal
aspherical wavefront, with a frequency equal to that of the
carrier. The second term represents a wavefront with a large
asphericity and a frequency equal to about twice the carrier
frequency. The last term represents a wavefront with a shape
equal to the difference between the actual measured wave-
front and the ideal aspherical wavefront. If all terms in these
signals with frequencies equal to or greater than the carrier
frequency are removed by means of a low-pass filter, only the
last term remains, with real and imaginary components given
by the signals zS(x,y) and zC(x,y) of an ideal aspherical wave-
front with tilt (shown in Figure 8.2), as follows:

(8.26)

and

(8.27)

Then, the wavefront deformations W(x,y) – Wr(x,y) are given
by:

(8.28)

which are the wavefront deviations with respect to the ideal
aspherical wavefront.

We can see in Figure 8.10 that the width of the spectrum
of the reconstructed wavefront (under test) is much narrower
when an aspherical wavefront is used as a reference. On the
other hand, the width of the spectrum of the conjugate wave-
front is duplicated, because its asphericity is duplicated. The
Nyquist limit is reached with the same sampling frequency
as in the normal case, thus no improvement is obtained in
this respect; however, because the width of the spectrum of
the reconstructed wavefront is much narrower, the low-pass
filter has to be narrower in this case.
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8.2.3 Analog and Digital Implementations 
of Phase Demodulation

As mentioned before, Ichioka and Inuiya (1972) used analog
electronics to implement a simple phase-demodulation proce-
dure. Several years later, another, slightly different phase
demodulation method was described by Mertz (1983) that still
utilized electronics hardware. He made three measurements
in a small interval where the phase could be considered to
change linearly with the distance. The measurements were
separated 120° in their phase. Macy (1983) studied Mertz’s
method but utilized software calculations instead of hardware.

Commercial interferometers have been constructed that
evaluate two-dimensional wavefront deformations by direct
digital phase demodulation (Dörband et al., 1990; Freischlad
et al., 1990a,b; Küchel, 1990). The multiplications and spatial
filtering are implemented through the use of dedicated digital
electronics hardware, and the image is captured via a two-
dimensional array of 480 × 480 pixels. Many image frames

Figure 8.10 Spectra when reconstructing with (a) a flat wavefront
and (b) an aspherical wavefront.
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were obtained at a rate of 30 per second, and then a wavefront
averaging technique was used to reduce the effects of atmo-
spheric turbulence. The random wavefront measurement
error is inversely proportional to the square root of the num-
ber of averaged wavefronts.

Another practical implementation of the digital demod-
ulation of interferograms with a linear carrier has been
described by Womack (1984). The interferogram is digitized
with a two-dimensional array of light detectors (for example,
with a charge-coupled device [CCD] television camera), and
the irradiance values are sampled at every pixel in the detec-
tor. All operations are performed numerically, instead of using
illumination with a real hologram. The sampled signal values
are multiplied by the reference functions sin(2πfrx) and
cos(2πfrx) to obtain the values of the functions zS(x,y) and
zC(x,y), respectively. Thus, we can write:

(8.29)

and

(8.30)

where M is the number of pixels in a horizontal line to be
scanned and sampled.

8.2.4 Spatial Low-Pass Filtering

The Fourier theory developed in Chapter 5 is not directly
applicable here because we need to calculate the phase for all
values of x, not only at the origin; thus, the complete low-pass
filtering convolution for all values of x must be performed. As
we have seen in Section 8.1.3, we require the elimination of
undesired spatial frequencies at all values of x along the
interferogram measured line. Thus, a common filtering func-
tion, h(x), can be used for zS(x) and zC(x). This low-pass filter
transforms zS(x,y) and zC(x,y) into the functions  and

, respectively, as follows:
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(8.31)

and

(8.32)

where N is the number of pixels taken before and after the
point (x) being considered. We have assumed a finite spatial
filter extent of 2N + 1 pixels for the filtering function (i = –N
to +N).

These two functions are evaluated in two steps. First,
the interferogram signal values on every pixel are multiplied
by the reference functions sine and cosine to obtain zS(x,y)
and zC(x,y). Then, the spatial low filtering process with the
filtering function h(x) is performed. As shown in Figure 8.11,
the purpose of the low-pass filter is to filter out all undesired
high frequencies in order to isolate the desired first-order lobe
in the Fourier spectrum.

The low-pass filter can be any symmetric filter — for
example, the two-dimensional Hanning, Hamming, cos2, or
any other kernel filter described earlier. In Equations 8.31
and 8.32, a kernel with 2N + 1 elements is assumed.

Because none of the spectral responses of the usual low-
pass filters has a sharp edge, some attenuation of the high
spatial frequencies in the wavefront can occur, as illustrated

Figure 8.11 Filtering with a low-pass filter.

Wavefront

Filter

z x y s y f h xS i

i N

N

r i i( , ) , sin= ( ) ( ) −( )
=−
∑ α π α α2

z x y s y f h xC i

i N

N

r i i( , ) , cos= ( ) ( ) −( )
=−
∑ α π α α2



in Figure 8.12. This attenuation is the same in the real part
as well as in the imaginary part of the Fourier transform of
the filtered wavefront, as the same filter is used for both zS(x,y)
and zC(x,y); thus, no phase error is introduced. Figure 8.13
shows an example of phase demodulation using a linear car-
rier and discrete sampling of the interferogram.

Figure 8.12 Attenuation of high spatial frequencies in the
measured wavefront with a low-pass filter.

(a) (b) (c)

(d)

Figure 8.13 Phase demodulation with a linear carrier: (a) inter-
ferogram, (b) Fourier transform of interferogram, (c) wrapped phase,
and (d) unwrapped phase.
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8.2.5 Sinusoidal Window Filter Demodulation

We will now describe another space-domain demodulation
method using a sinusoidal filtering window (Womack, 1984).
Let us consider the particular case when the reconstruction
frequency is quite different from the carrier frequency and is
equal to zero. It this case, reconstruction in the hologram is
achieved using a flat wavefront impinging perpendicularly on
the hologram, as shown in Figure 8.14. In this case, the
spectra for the wavefront being reconstructed and the wave-
front being analyzed are symmetrically placed with respect
to the origin, as shown in Figure 8.15. Under these conditions,
a low-pass filter does not allow us to isolate the spectrum of
the desired wavefront from the rest. Only the zero-order beam
can be isolated with a low-pass filter.

A sinusoidal filter, hS(x), as described in a previous chap-
ter, allows for beam separation. On the other hand, a cosinu-
soidal filter, hC(x), can be used to eliminate the zero-order
beam; that is, we need a set of two filters in quadrature, acting
as a band-pass filter, to isolate the first-order beam. The band-
pass filtering can then be performed using the relations:

Figure 8.14 Reconstruction with a hologram using a normal ref-
erence wavefront.
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(8.33)

and

(8.34)

as shown in Figure 8.16.

Figure 8.15 Spectrum from a hologram using a normal reference
wavefront.

Figure 8.16 Filtering with a sinusoidal window band-pass filter.
Notice that the origin is not at the same location as in Figure 8.12.
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An advantage of this method is that multiplication by
the reference functions and the filtering operations are per-
formed in a single step by means of the appropriate kernel.
The frequency width of the filter is given by the space width
of the square function and the frequency position of the filter
by the frequency of the sine and cosine functions.

Once the proper convolution kernels for hS(x) and hC(x)
have been found, the signal phase at the first pixel in the
interval is calculated. The kernel is then moved one pixel to
the right, and the signal phase is again calculated for this
new pixel until a whole line is scanned. The wavefront shape
can be expressed as:

(8.35)

8.2.6 Spatial Carrier Phase-Shifting Method

The spatial carrier phase-shifting method introduced by
Shough et al. (1990) is a spatial application of the temporal
phase-shifting techniques. The basic assumption is that in a
relatively small window the wavefront can be considered flat,
so, in a small interval, the phase varies linearly and the phase
difference between adjacent pixels is constant. The interval
length is chosen so that the number of pixels it contains is
equal to the number of sampling points. The signal phase is
calculated, using a phase-shifting sampling algorithm, at
some point in the first interval on a line being scanned, then
the interval is moved one pixel to the right and the signal
phase is again calculated. In this manner, the procedure con-
tinues until an entire line is scanned.

We can see that this method is equivalent to the sinusoidal
window filter demodulation method described earlier. Here, the
chosen phase-shifting sampling algorithm defines the filtering
functions used. The Fourier theory developed in Chapter 5 is
directly applicable, as the phase is to be determined at the local
origin of each interval.

Many different phase-shifting sampling algorithms can be
used. A frequent important requirement is that asynchronous
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or detuning-insensitive algorithms must be used, as the fre-
quency in the interval is not always well known, mainly if the
wavefront is aspherical or has strong deformations. A second
useful requirement is low sensitivity to harmonics.

The simplest approach when the spatial carrier fre-
quency is well known and the wavefront deviations from sphe-
ricity are small is to use the three-step algorithms — for
example, three 120° equally spaced points or Wyant’s three-
step algorithm, as described by Kujawinska and Wójciak
(1991a,b), using a phase step of π/2 between any two consec-
utive pixels. As pointed out before, when the wavefront is
defocused or aspherical the spacing between the fringes is not
constant and significant detuning errors are likely to appear,
because the fringe spacing is quite variable inside the aper-
ture. To solve this problem, Kujawinska and Wójciak (1991a,b)
used the Schwider and Hariharan self-calibrating, five-sam-
pling-point approach. Frankowski et al. (1989) published a
report on their efforts to experimentally determine the degree
of correction obtained with the asynchronous approach orig-
inally proposed by Toyoka and Tominaga (1984) and described
in Chapter 6. 

To test strongly aspherical surfaces it is better to assume
that the phase step between adjacent pixels is not constant
and has to be determined. The phase can then be found using
an asynchronous algorithm — for example, the Carré algo-
rithm, as proposed by Melozzi et al. (1995), although almost
any other asynchronous detection algorithm, such as those
described in Chapter 6, can be used.

A practical way to obtain the signal phase at all points
in the pupil is to calculate the two functions  and 
by means of a convolution of the signal with two one-dimen-
sional kernels, hS(x) and hC(x), and then use Equation 8.35.
The two kernels are defined by the chosen phase-shifting algo-
rithm. Figure 8.17 shows the one-dimensional kernels for three
common phase-shifting algorithms with phase equations:

(8.36)
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(8.37)

with shifts of –120°, 0°, and +120°.
In the Zeiss Direct 100 interferometer, Küchel (1997)

used a linear carrier with an angular orientation at 45° and
a magnitude such that two consecutive horizontal or vertical
pixels had a phase difference of 90°. As pointed out by Küchel
(1994), the advantages of a linear carrier with this orientation
include the following:

1. A 3 × 3 convolution kernel measures five steps in the
perpendicular direction to the fringes.

2. The distance between pixels in the perpendicular

direction to the fringes is  smaller than the dis-
tance in a horizontal or vertical direction, thus
enhancing spatial resolution.

Figure 8.18a shows a 3 × 3 kernel suggested by Küchel (1994).
This kernel is obtained by a combination of three inverted T
algorithms shifted 90°, the second with respect to the first
and the third with respect to the second. This kernel is sym-
metrical about its diagonal at –45°, due to the inclination of
the carrier fringes at 45°. Unfortunately, complete detuning
insensitivity is not obtained as in the Schwider algorithm,

Figure 8.17 Two one-dimensional kernels for phase-shifting
algorithms with three sampling points.
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because the three algorithms have the same weights when
linearly combined. Nevertheless, this kernel has a relatively
low sensitivity to detuning. Its phase equation is:

(8.38)

Better results can be obtained if detuning-insensitive
algorithms are used. A similar algorithm, but one that is
detuning insensitive, is obtained if the second algorithm of
the combination is given a weight of two (in the numerator
as well as in the denominator of its phase equation), thus
obtaining:

(8.39)

Figure 8.18 Two 3 × 3 kernels for spatial phase-shifting phase
demodulation.
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The kernel for this algorithm is shown in Figure 8.18b. Greater
flexibility and thus better results can be obtained with a prop-
erly designed 5 × 5 kernel.

It is important to notice that the function tan–1 gives the
result modulo 2π. This means that in all of these phase demod-
ulation methods the wavefront W(x,y) is calculated modulo λ.
This is what is referred to as a wrapped phase. Unwrapping
is a general problem in interferogram analysis, and methods
to unwrap the phase are studied in detail in Chapter 11.

8.2.7 Phase-Locked Loop Demodulation

Phase-locked loop (PLL) demodulation, another method for
interferogram analysis with a linear carrier, is based on the
phase-locked loop method used in electrical communications.
The PLL technique has been used since 1950 in electronic
communications to demodulate electrical signals; however, its
use in interferometry occurred later (Servín and Rodríguez-
Vera, 1993; Servín et al., 1995). A PLL can be considered a
narrow band-pass adapting filter the central frequency of
which tracks the instantaneous fringe pattern frequency
along the scanning line. Figure 8.19 shows the building blocks
of a typical electronic PLL with its basic components.

The basic principle of this phase-tracking loop is the fol-
lowing: The phase changes of a phase-modulated input signal
are compared with the output of a voltage-controlled oscillator
(VCO) by means of a multiplier (see Figure 8.19). The PLL
works in such a way that the phase difference between the
modulated input signal and the output signal of the VCO
eventually vanishes. This phase tracking is achieved by means
of a closed loop and feeding the input of the VCO with the
output signal, which is proportional to the modulating signal.
When evaluating an interferogram, this VCO is not actually
a piece of hardware but rather is simulated by computer soft-
ware. For convenience, the term “VCO” will be used here, even
though the signals are not voltage signals but are numbers.
Let us assume that the input phase-modulated signal with
amplitude s(x) has a carrier angular frequency of ω and a phase
modulation of φ(x) given by:



(8.40)

The VCO is an oscillator tuned to produce a sinusoidal refer-
ence signal with angular frequency ωr in the absence of a
control voltage. When a control voltage is applied to the VCO,
its frequency output changes to a new value. The low-pass
filter shown in Figure 8.19 is a one-pole filter that can be
represented by the following first-order differential equation:

(8.41)

where g is the gain of the low-pass filter of the PLL. This
equation can also be rewritten as:

(8.42)

The right-hand term of Equation 8.42 can be rewritten as:

(8.43)

The first-order differential equation filters out all high fre-
quencies. This eliminates the first and second terms, leaving
only the last term with the lowest frequency:

Figure 8.19 Building blocks for an electronic phase-locked loop.
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(8.44)

When the phase-locked loop is operating, the phase difference
is small enough to consider a linear approximation valid.
Hence, we can write:

(8.45)

To understand how this loop works, let us consider a
system initially in equilibrium, where ωr = ω. Then, due to
the phase modulation on the input signal, its frequency
changes momentarily, producing a change in its phase. This
change produces a change in the input of the low-pass filter
that acts on the VCO, increasing its frequency of oscillation.
A new equilibrium point is found when the phase of the
oscillator matches that of the input. Of course, the change in
the phase of the input signal is reflected in an increase in the
input of the VCO; thus, the low-pass filter output is the
demodulated signal.

Normalizing the gain of the VCO (A = 1), we can write:

(8.46)

where τ is the closed-loop gain. This differential equation tells
us that the rate of change of the phase of the VCO is directly
proportional to the demodulated signal. The output phase of
the VCO will follow the input phase continuously as long as
the input signal does not have any large discontinuities.

If the product of the closed-loop gain (τ) multiplied by
the signal amplitude (b) is less than one, we can compute the
modulation signal by the more precise expression:

(8.47)
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because a first-order system with a small closed-loop gain (τ)
behaves as a low-pass filter; that is, due to the low τ value,
no explicit low-pass filtering is required.

This theory can be applied to interferogram fringe anal-
ysis if the input signal is replaced by signal values along a
horizontal scanning line in the interferogram. The variations
in the illumination can be filtered out using a high-pass filter.
High-pass filtering is also convenient because the phase-
locked loop low-pass filter rejects only an unwanted signal
with twice the carrier frequency of the interferogram. As
pointed out in Chapter 3, a very simple high-pass filter is
achieved simply by substituting the signal function with its
derivative with respect to x. Thus, Equation 8.47 can be writ-
ten as:

(8.48)

One possible way to scan a two-dimensional fringe pat-
tern using a PLL can be found in Servín and Rodríguez-Vera
(1993). Figure 8.20 shows an example of phase demodulation
using the phase-locked loop method and the two-dimensional
scanning strategy proposed in Servín and Rodríguez-Vera
(1993). This demodulation method has been applied to aspher-
ical wavefront measurement and also to demodulating Ronchi
patterns (Servín et al., 1994).

(a) (b)

Figure 8.20 Example of phase demodulation using the phase-
locked loop method: (a) interferogram to be demodulated, and (b)
two-dimensional demodulated phase.
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8.3 CIRCULAR SPATIAL CARRIER ANALYSIS

For some systems of closed fringes, the introduction of a linear
carrier is not practical for some reason — for example, because
the minimum needed carrier is of such a high spatial fre-
quency that the Nyquist limit is exceeded. This situation can
arise when the wavefront being measured is highly aspherical
or aberrant; in this case, demodulation must be performed
without a linear carrier. One alternative to a linear carrier is
a circular carrier that introduces large defocusing, as shown
in the interferogram in Figure 8.21. The irradiance function
in the interferogram produced by the interference between a
reference spherical wavefront and the wavefront under con-
sideration is:

(8.49)

where S2 = x2 + y2. The radial carrier spatial frequency is:

(8.50)

Again using the holographic analogy, we can interpret the
interferogram as an on-axis or Gabor hologram. This holo-
gram can be demodulated by illuminating it with a reference
wavefront, either spherical or flat. This demodulation can be
achieved only if the phase in the irradiance function increases
or decreases in a monotonic manner from the center toward
the edge of the pupil. Thus, if the defocusing term is positive,
we require that
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(8.51)

or

(8.52)

This condition assures us that two fringes in the interfero-
gram aperture do not have the same order of interference. In
other words, no fringe crosses more than once any line traced
from the center of the interferogram to its edge. In the vicinity
of the center of the interferogram the carrier frequency is so
small that the demodulated phase in this region is not reli-
able. This is a disadvantage of this method. To reduce this
problem, the circular carrier frequency should be as large as
possible, provided the Nyquist limit is not exceeded.

8.4 PHASE DEMODULATION WITH 
A CIRCULAR CARRIER

Phase demodulation of an interferogram (hologram recon-
struction) can be performed using an on-axis spherical or
tilted spherical wavefront. These two methods, although quite
similar, have some small but important differences.

8.4.1 Phase Demodulation with a 
Spherical Reference Wavefront

Demodulation using an on-axis spherical wavefront with
almost the same curvature used to introduce the circular

Figure 8.21 Interferogram with a circular carrier.
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carrier is illustrated in Figure 8.22 (Garcia-Marquez et al.,
1998). This spherical reference wavefront can be written as:

(8.53)

where S2 = x2 + y2, and the curvature of this wavefront is close
to that of the original spherical wavefront that produced the
hologram (circular carrier). In other words, the value of coef-
ficient Dr for the reference beam must be as close as possible
to the value of coefficient D for the spherical beam introducing
the circular carrier.

The product between the interferogram irradiance, s(x,y),
in Equation 8.51 and the illuminating wavefront amplitude,
r(x,y), is:

(8.54)

Figure 8.22 Phase demodulation in an interferogram with a circu-
lar carrier using a spherical reference wavefront.
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The first term is the zero-order beam corresponding to the
illuminating spherical wavefront. Its spatial frequency is zero
at the center, and it increases with the square of S toward
the edge of the pupil:

(8.55)

The second term is the minus first order. It is the conjugate
wavefront with deformations opposite those of the wavefront
being analyzed. Its curvature is about twice the reference
wavefront curvature, and its spatial frequency is:

(8.56)

The third term is the first order of diffraction and represents
the reconstructed wavefront, with only a slight difference in
curvature, and its spatial frequency is:

(8.57)

The Fourier spectra of these three beams are concentric
and overlap each other; however, the wavefront to be mea-
sured can still be isolated due to the different diameters of
these spectra. Equation 8.54 can be rewritten as:

(8.58)

We see that phase demodulation of an interferogram with a
circular carrier can be achieved by multiplying the signal by
the functions cosine and sine with a quadratic phase, close to
that used to introduce the circular carrier.

Using a two-dimensional, digital, low-pass filter, we can
eliminate the first two terms in Equation 8.54 to obtain:
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(8.59)

Thus, the wavefront being reconstructed is given by:

(8.60)

An example of phase demodulation using a circular carrier is
provided in Figure 8.23.

8.4.2 Phase Demodulation with a 
Tilted-Plane Reference Wavefront

This method, described by Moore and Mendoza-Santoyo
(1995), is basically a modification of that of Kreis (1986a,b)
for the Fourier method. Here, we consider a circular carrier,
but we will see that this method is more general and also
applies to interferograms with systems of closed fringes. To
understand how demodulation can be achieved with closed
fringes, let us consider the interference along one diameter
in an interferogram with a circular carrier. Figure 8.24a
shows a flat wavefront interfering with a spherical wavefront.

(a) (b) (c)

Figure 8.23 Phase demodulation of the interferogram with a
circular carrier (see Figure 5.19): (a) spectrum, (b) phase map, and
(c) unwrapped phase.
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In Figure 8.24b, the spherical wavefront has been replaced
by a discontinuous wavefront in which the sign of the left side
has been reversed. Both pairs of wavefronts produce the same
interferogram with the same signal, as shown in Figure 8.24c.

In the first case, the phase increases monotonically from
the center to the edges. In the second case, the phase increases
monotonically from the left to the right. If we assume that
what we have is the second case, we can perform phase demod-
ulation in the standard manner, multiplying by the functions
sine and cosine and then low-pass filtering these two functions;
however, to obtain the correct result we must reverse the sign
of the left half of the wavefront.

Now, using the holographic analogy, let us consider an
interferogram with a circular carrier and illuminated with a
tilted-plane wavefront, as illustrated in Figure 8.25. This illu-
minating tilted-plane reference wavefront can be written as:

(8.61)

where this reference tilt has to be larger than half the max-
imum tilt in the wavefront along the x-axis.

Figure 8.24 Interfering wavefronts: (a) flat wavefront and spher-
ical wavefront, (b) flat wavefront and discontinuous wavefront with
two spherical portions, and (c) signal for both cases.
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The product of the interferogram irradiance, s(x,y), in
Equation 8.49 and the illuminating wavefront amplitude,
r(x,y), gives us:

(8.62)

The first term is the tilted, flat wavefront (zero order), the
second term is the conjugate wavefront, and the last term is
the reconstructed wavefront to be measured. The wavefront to
be measured and the conjugated wavefront differ only in the
sign of the deformations with respect to the reference plane.

The Fourier spectrum of Equation 8.62 is illustrated in
Figure 8.26. We see that these three spots are concentric but
shifted laterally with respect to the axis. If we use a rectan-
gular low-pass filter as shown on the right side of Figure 8.26,
we can see that we are isolating the reconstructed wavefront

Figure 8.25 Phase demodulation in an interferogram with a
circular carrier using a tilted-plane reference wavefront.
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for the +y half-plane and the conjugate wavefront for the –y
half-plane. The conjugate wavefront is equal in magnitude to
the reconstructed wavefront but has the opposite sign. Thus,
we obtain the wavefront being measured simply by changing
the sign of the retrieved wavefront deformations for the neg-
ative half-plane. It is easy to understand that singularities are
present in the vicinity of the points where the slope of the
fringes is zero.

We can also write Equation 8.62 as:

(8.63)

Again, we see that the phase demodulation of an interfero-
gram with a circular carrier can be achieved by multiplying
the signal by the functions cosine and sine with a reference
frequency. This reference frequency has to be larger than half
the maximum spatial frequency in the interferogram, and the
filter edge in the Fourier domain has to be sharp enough.

Using two-dimensional, digital, low-pass filtering, the
first two terms in Equation 8.62 are eliminated, so we obtain:

Figure 8.26 Fourier spectrum produced by an interferogram with
a circular carrier (Gabor hologram) when illuminated with a tilted,
flat reference wavefront.
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(8.64)

Thus, the retrieved wavefront is given by:

(8.65)

which, as we know, gives us the wavefront to be measured by
changing the sign of the phase for negative values of y. Exam-
ples of phase demodulation using a circular carrier and a tilted-
plane reconstruction wavefront are shown in Figure 8.27.

8.5 FOURIER TRANSFORM PHASE 
DEMODULATION WITH 
A LINEAR CARRIER

Wavefront deformations in an interferogram with a linear car-
rier can also be calculated with a procedure using Fourier
transforms. This method was originally proposed by Takeda et
al. (1982) using one-dimensional Fourier transforms along one
scanning line. Later, Macy (1983) applied Takeda’s method to

(a) (b)

Figure 8.27 Phase map of demodulated interferogram with a
circular carrier: (a) interferogram, and (b) retrieved phase. A reference
frequency near the highest value in the interferogram was used.
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extend the Fourier transform to two dimensions by adding the
information from many scanning lines and obtaining slices of
the two-dimensional phase. Bone et al. (1986) extended Macy’s
work by using two-dimensional Fourier transforms and sug-
gested techniques to reduce phase errors introduced by the
finite boundaries.

Let us assume that we are calculating the Fourier trans-
form of an interferogram with a large tilt. The minimum mag-
nitude of this tilt from a geometrical point of view is the same
as that used in direct interferometry; however, even if this tilt
is increased, the images with orders of minus one and plus one
still partially overlap the light with the zero order of diffraca-
tion. The reason is that diffraction effects due to the finite size
of the aperture produce rings around the three Fourier images.
The presence of these rings makes it impossible to completely
separate the three images so the zero-order image can be iso-
lated. These diffraction rings due to the finite boundary of the
interferogram can be substantially reduced by any of two mech-
anisms, as described in Section 8.1.4. Figure 8.28 shows the
result of applying a two-dimensional Hamming window to an
interferogram and its effect on the Fourier transform.

Another important precaution for avoiding the presence
of high spatial frequency noise in the Fourier images is to
subtract irradiance irregularities in the continuum. These can
be easily subtracted by measuring the irradiance in a pupil
without interference fringes and then subtracting the irreg-
ularities from the interference pattern. This continuum can

(a) (b) (c) (d)

Figure 8.28 Interferogram and its Fourier transform, before and
after applying the Hamming filter: (a) interferogram, (b) its Fourier
transform, (c) same interferogram after applying Hamming function,
and (d) its Fourier transform.



be measured in many ways, as described by Roddier and
Roddier (1987), who also described several ways to eliminate
the effects of turbulence in the interferogram.

Once the interference pattern has been cleaned up and
the fringes extended outside of the pupil or the Hamming
filter has been applied, a fast Fourier transform (see Chapter
2) is used to obtain the Fourier space images. When the three
Fourier spots are clear and separated from each other, a cir-
cular boundary is selected around one of the first-order images
(Figure 8.29). All irradiance values outside this circular
boundary are multiplied by zero to isolate only the selected
image. After the desired image is isolated, its center is shifted
to the origin and its Fourier transform is obtained. The result
is the wavefront under test.

To describe this procedure mathematically, let us write
the expression for the signal in the form:

(8.66)

where * denotes a complex conjugate and fc is the carrier
spatial frequency. The variable s(x,y) is the signal in the inter-
ferogram after subtracting the irradiance irregularities and
the Hamming filter has been applied or the fringes have been
extrapolated outside of the pupil. We have written all vari-
ables with lower-case letters, so the Fourier transforms are
represented with upper-case letters, and h(x,y) is defined by:

(8.67)

Figure 8.29 Isolating desired spectrum spot in interferogram
using the Fourier method.
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If we take the Fourier transform of the signal s(x,y) using
some Fourier transform properties, we can write:

(8.68)

where the coordinates in the Fourier plane are fx and fy .
A low-pass filter function can be used to isolate the desired

term (for example, the Hamming filter), thus obtaining:

(8.69)

Shifting this function to the origin in the Fourier plane we
have:

(8.70)

Now, taking the inverse Fourier transform of this term we
obtain:

(8.71)

Hence, the wavefront deformation is given by:

(8.72)

As an example, the wavefront obtained from the interfero-
gram in Figure 8.21 is shown in Figure 8.30.

(a) (b)

Figure 8.30 Phase demodulation of interferogram shown in
Figure 8.26 using the Fourier transform method: (a) phase map,
and (b) wavefront deformations after phase unwrapping.
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Reviews on the Fourier method have been published by
Takeda (1989) and Kujawinska et al. (1989). Kujawinska and
Wójciak (1991a,c) have described practical details for the
implementation of Fourier demodulation, and Simova and
Stoev (1993) have applied this technique to holographic moiré
fringe patterns.

8.5.1 Sources of Error in the 
Fourier Transform Method

The Fourier transform method has some advantages but also
some important limitations compared to other phase-modu-
lation methods for analyzing interferograms with linear car-
riers. Several factors can introduce errors into phases
calculated by the Fourier transform method, as pointed out
in detail by, for example, Nugent (1985), Takeda (1987, 1989),
Green et al. (1988), Frankowski et al. (1989), Malcolm et al.
(1989), Kujawinska and Wójciak (1991a,c), and Schmit et al.
(1992). The main errors are inherent to the discrete nature
of the fast Fourier transform. The continuous Fourier trans-
form cannot be evaluated; instead, the discrete fast Fourier
transform is used. The following are some of the possible
sources of phase errors:

Figure 8.31 Graphical illustration of errors due to the discrete
nature of the fast Fourier transform: (a) aliasing, (b) energy leakage,
and (c) picket fence.

(c)
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1. Aliasing — If the sampling frequency is not high
enough, as in Figure 8.31a, the Nyquist limit is
exceeded and some nonexistent spatial frequencies
can appear in the computed wavefront.

2. Picket fence — This error is produced by discrete cal-
culation of the fast Fourier transform. We see in Fig-
ure 8.31c that not all frequency components appear
in the calculated discrete Fourier transform. It is easy
to see that after filtering and taking the inverse Fou-
rier transform some wavefront spatial frequencies can
disappear in the calculated wavefront.

3. Energy leakage — This is the most important source
of phase errors in the Fourier method. As we pointed
out before, if the tilt is not high enough and the pupil
is finite, the side ripples of the Fourier transforms of
each order interfere with each other, as in Figure
8.31b. This effect can cause serious phase errors in
the retrieved wavefront due to leakage of the energy
of some spatial frequencies into adjacent spatial fre-
quencies. Increasing the tilt, using window functions
such as the Hamming filter, or extrapolating fringes
outside of the pupil limits can reduce this error.

4. Multiple reflection or spurious fringes in the interfer-
ogram — Multiple reflection or spurious fringe inside
the interferogram pupil as well as outside can pro-
duce phase errors. These fringes distort the signal,
introducing harmonic components. In this case, the
minimum frequency of the linear carrier is three
times that required by Equation 8.3, as discussed in
Section 8.1.3. The reason is that the harmonic com-
ponents cannot be filtered out if their spatial fre-
quency is lower than the maximum fringe frequency
in the interferogram. The proper low-pass filtering
should then be performed.

5. Light detector nonlinearity — Nugent (1985) showed
that if the light detector has a nonlinear response to
the light irradiance then the harmonics due to this
nonlinearity produce phase errors.



6. Random noise — Bone et al. (1986) showed that the
expected root mean square (rms) phase error is:

(8.73)

where α = n/N is the ratio of the number of spectral
sample points (n) in the filter band pass to the number
of sample points (N), σ is the rms value of the noise,
and m is the mean modulation amplitude.

7. Quantization errors — Frankowski et al. (1989)
proved that quantization noise cannot contribute to
phase errors. The error for 6 bits is smaller than
1/1000 of a wavelength.

A comparison of phase-shifting interferometry and the Fou-
rier transform method from the viewpoint of their noise char-
acteristics has been published by Takeda (1987).

8.5.2 Spatial Carrier Frequency, 
Spectrum Width, and Interferogram 
Domain Determination

The magnitude of the spatial carrier frequency, the filter
width, and the interferogram domain limits are three impor-
tant parameters that must be determined with the highest
possible precision. They can be obtained automatically, as
described by Kujawinska (1993), but they can also be
obtained using operator-assisted methods. As pointed out
before, to measure and then to remove the spatial carrier
(tilt) from the interferogram, Takeda et al. (1982), Macy
(1983), and Lai and Yatagai (1994) performed a lateral trans-
lation of the Fourier transform of the interferogram. However,
the magnitude of the translation must be determined before-
hand but it cannot be figured exactly, as the Fourier trans-
form is calculated at discrete spatial frequency values. As a
result, we are bound to obtain a residual tilt in the calculated
interferogram, but this linear term can then be removed in
the final result.

δφ π α σrms m=
2



Filter width determination is another problem that must
be solved. Takeda and Mutoh (1983) suggested that the limits
of the Fourier band to be filtered and preserved are the max-
imum and minimum local fringe spatial frequencies. This is
true for large wavefront deformations, where we can neglect
diffraction effects. Kujawinska et al. (1990) suggested another
method to determine both the carrier frequency and the spec-
trum width. The carrier frequency is determined by locating
the maximum value of the Fourier transform, and the filter
width is determined by isolating the area in the frequency
space where Fourier transform values above a certain thresh-
old are found.

The simplest (but not most precise) way to determine the
filter width and location is through operator intervention, by
observing on the computer screen the image of the two-dimen-
sional Fourier transform and manually selecting a circle
around the first order of a visually estimated location and size.

8.6 FOURIER TRANSFORM PHASE 
DEMODULATION WITH 
A CIRCULAR CARRIER

We have seen in Section 8.4.1 that an interferogram with a
circular carrier can be demodulated, following the holographic
analogy, using a tilted, flat reconstruction wavefront without
a linear carrier. This method can also be used for demodula-
tion using the Fourier transform. In this case, the flat recon-
structing wavefront does not need to be tilted, as illustrated
in Figure 8.32. This method of demodulating with closed
fringes was described by Kreis (1986a,b). If all frequencies
greater than or equal to zero are filtered out, as shown in
Figure 8.33, then we can isolate the reconstructed wavefront
for the +y half-plane and the conjugate wavefront for the –y
half-plane. The wavefront to be measured is obtained if the
sign of the phase for positive values of y is changed. Kreis
(1986a,b) showed that this method can be extended to demod-
ulation of fringe patterns with closed fringes, not necessarily
with a circular carrier. The fringe pattern has to be processed



with two orthogonal rectangular filters as shown in Figure
8.34. The problem of analyzing an interferogram with closed
fringes, as well as the problem of recording in a single inter-
ferogram information about two events using crossed fringes,
has been studied by Pirga and Kujawinska (1995, 1996).

Figure 8.32 Demodulation of an interferogram with a circular
carrier (Gabor hologram) with a flat reference wavefront.

Figure 8.33 Spatial frequencies in an interferogram with a circular
carrier (Gabor hologram) when illuminated with a flat reference
wavefront, after filtering out all positive spatial frequencies (fy).
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9

Interferogram Analysis
with Moiré Methods

9.1 MOIRÉ TECHNIQUES

When two slightly different periodic structures are superim-
posed, a moiré fringe pattern appears (Sciammarella, 1982;
Reid, 1984; Patorski, 1988). Traditionally, moiré patterns
have been analyzed from a geometrical point of view, but
alternative approaches have also been used. Chapter 1
described some of the typical applications for moiré tech-
niques, the use of which is explored in this chapter as a tool
for the analysis of interferograms. The superposition of peri-
odic structures to form moiré patterns can be performed in
two different ways:

1. Multiplication of the irradiances of the two images —
This process can be implemented by, for example,
superimposing the slides of two images, which is the
most common method. The irradiance transmission
of the combination is equal to the product of the two
transmittances; thus, the contrast in the moiré is
smaller than the contrast in each of the two images.
An interesting holographic interpretation of the mul-
tiplicative moiré is described later in this chapter.



2. Addition or subtraction of the irradiances of the two
images — This method is less commonly used than
the multiplicative method because it is more difficult
to implement in practice (Rosenblum et al., 1992).
The advantage of this method is that, because the
two images (irradiances) are additively superim-
posed, the contrast in the moiré image is higher than
in the multiplicatively superimposed images.

9.2 MOIRÉ FORMED BY TWO 
INTERFEROGRAMS WITH 
A LINEAR CARRIER

To analyze the moiré fringes from a geometrical point of view,
using the multiplicative method, let us consider a photo-
graphic slide with a phase-modulated structure, such as an
interferogram with a linear carrier (tilt), for which the trans-
mittance (assuming maximum contrast) can be described by:

(9.1)

where W(x,y) represents the wavefront deformations with
respect to a close reference sphere (frequently a plane), and
the angle θ introduces the linear carrier by means of a wave-
front tilt about the x-axis.

Let us now superimpose this interferogram to be evalu-
ated on another reference interferogram with an irradiance
transmittance given by:

(9.2)

where Wr(x,y) is any possible aspherical deformation of the
wavefront producing this interferogram, with respect to the
same reference sphere used to measure W(x,y), dr is the vertex
spatial period of the reference linear carrier, and φ is its phase
at the origin. The transmittance of the combination is the
product of these two individual transmittances. Thus, if the
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moiré pattern is produced by the multiplicative method, the
transmitted signal s(x,y) is:

(9.3)

from which we obtain:

(9.4)

Let us now use the following trigonometrical identity:

(9.5)

to obtain:

(9.6)

It is important to note that, although each of the cosine func-
tions can have a positive or negative value, the total signal
function has only positive values.

This result applies to spherical as well as aspherical wave-
fronts. The following sections consider a reference interfero-
gram with tilt fringes and a reference aspherical interferogram.
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9.2.1 Moiré with Interferograms 
of Spherical Wavefronts

When the wavefront that produced the interferogram to be
evaluated is nearly spherical the reference interferogram
must be ideally perfect, which, as pointed out before, means
that it is formed by straight, parallel, equidistant fringes. If
we assume that the reference wavefront is spherical and
Wr(x,y) is equal to zero, then Equation 9.6 becomes:

(9.7)

The first term on the right side of Equation 9.7 is a constant,
so it has zero spatial frequency. Because φ is a constant, we
see that the spatial frequency along the x coordinate of the
second term is f2(x,y), written as:

(9.8)

the spatial frequency along the x coordinate of the third term
is f3(x,y), written as:

(9.9)

and the spatial frequency along the x coordinate of the fourth
term is f4(x,y), written as:

(9.10)

where the interferogram carrier frequency (f) and the refer-
ence carrier frequency (fr) are given by:
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(9.11)

Finally, the frequency of the fifth term is the reference fre-
quency. Figure 9.1 shows the Fourier spectrum with the spa-
tial frequency distribution of this moiré pattern.

Equation 9.7 represents the resulting irradiance pattern,
but when observing moiré patterns the high-frequency com-
ponents must be filtered out by any of several possible meth-
ods — for example, by defocusing or digital filtering. It is
important to notice that the low-pass filtering reduces the
contrast of the pattern.

Let us assume that the carrier frequencies f and fr are
close to each other. We also impose the condition that the
central frequency lobes in Figure 9.1 are sufficiently sepa-
rated from their neighbors so they can be isolated. Thus, the
carrier spatial frequency of the interferogram, along the x
coordinate, must have a value such that:

(9.12)

for all points inside the pattern.

Figure 9.1 Fourier spectrum with the spatial frequencies of the
moiré pattern.
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If we use a low-pass filter that cuts out all spatial fre-
quencies higher than f/2, leaving only the central lobes in
Figure 9.1, then we get:

(9.13)

which is the signal or irradiance of the interferogram, without
any tilt (if f = fr). From this result, we can derive two important
conclusions:

1. The moiré between the interferogram with a large
tilt and the linear ruling modifies the carrier fre-
quency or removes it if f = fr. It is interesting to note
that, to remove this carrier with the moiré effect, the
minimum allowed linear carrier is twice the value
required to phase demodulate the interferogram with
a linear carrier using the methods in Chapter 7.

2. The phase of the final interferogram after the low-
pass filter can be changed if the constant phase (φ)
of the linear ruling is changed. This effect has been
utilized in some phase-shifting schemes (Dorrio et
al., 1995a,b; 1996).

Figure 9.2a shows an example of an aberrant spherical
interferogram. The reference interferogram has a perfect
wavefront with tilt, as shown in Figure 9.2b. The resulting
moiré pattern is provided in Figure 9.3a, and Figure 9.3b
shows the moiré image after low-pass filtering.

(a) (b)

Figure 9.2 (a) Interferogram of an aberrant spherical wavefront
with a linear carrier, and (b) interferogram of a perfect spherical
wavefront with a linear carrier.
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The magnification or minification and, hence, the spatial
frequency of the reference ruling can be modified to change
the appearance of the moiré pattern. Two possible ways are
illustrated in Figure 9.4. In Figure 9.4a, the two slides are
placed one over the other, with a short distance between
them. The apparent magnification is changed by moving the
reference ruling a small distance along the optical axis to
change the separation between the two slides. In Figure 9.4b,
the interferogram is placed at an integer multiple of the
Rayleigh magnification of the reference ruling so an autoim-
age of the ruling is located close to the interferogram. Then,
the magnification is modified by moving the collimator along
the optical axis to make the light beam slightly convergent
or divergent.

When a ruling with a linear carrier is used as a refer-
ence, the magnification change can be a useful tool to visually
remove the linear carrier or to change its magnitude. If the
interferogram has a high-frequency linear carrier, the spatial
carrier (tilt) of the observed interferogram can be modified
at will by moving the collimator along the axis. If the linear
ruling is rotated, a spatial carrier (tilt) component in the y
direction as well as in the x direction is introduced. We
pointed out before that a lateral movement of the reference
linear ruling introduces a constant phase shift (piston term).
These effects can be used for teaching or demonstration
purposes.

(a) (b)

Figure 9.3 (a) Moiré formed by interferograms (one aberrant) of
spherical wavefront with a linear carrier, and (b) moiré image after
low-pass filtering. The histogram has been adjusted to compensate
for the reduction in the contrast due to the low-pass filtering.



9.2.2 Moiré with Interferograms 
of Aspherical Wavefronts

When two perfect aspherical interferograms are superim-
posed, a moiré pattern formed by straight and parallel lines
is observed. If the two interferograms are slightly different,
the moiré fringes represent the difference between the two
wavefronts, producing a null test. The general Equation 9.5
must now be used. The first term on the right-hand side of
Equation 9.6 has zero spatial frequency. The spatial frequency
in the x direction of the second term is f2(x,y), written as:

(a)

(b)

Figure 9.4 Optical arrangement to observe the moiré between an
interferogram with a linear carrier and a linear ruling, with
adjustable linear carrier frequency.
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(9.14)

the spatial frequency in the x direction of the third term is
f3(x,y), written as:

(9.15)

the spatial frequency in the x direction of the fourth term is
f4(x,y), written as:

(9.16)

and, finally, the frequency of the fifth term is f5, written as:

(9.17)

The Fourier spectrum for this case, when an aspherical inter-
ferogram forms the moiré with a reference aspherical inter-
ferogram, is shown in Figure 9.5. As pointed out before, when
we observe moiré patterns the high-frequency components are
filtered out. 

Let us now assume that the frequencies f and fr are close
to each other. We use a low-pass filter that cuts out all spatial
frequencies equal to or higher than the width of the central
lobes. To be able to isolate the lowest frequency terms, we
impose the condition that

(9.18)

and we find:

(9.19)
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Figure 9.6a shows an interferogram with spherical aber-
ration plus some other high-order aberrations. Figure 9.6b
shows an interferogram with pure spherical aberration, to be
used as a reference. The transmittance of the combination is
shown in Figure 9.7a, and Figure 9.7b shows the low-pass
filtered moiré for two aspherical wavefronts. If the wavefront
under consideration is equal to the reference wavefront, we
obtain a pattern of straight, parallel, equidistant lines; if the
linear carriers of both interferograms are different, the result
is like that found in any null test.

Figure 9.5 Fourier spectrum with the spatial frequencies of the
moiré pattern when an aspherical reference is used.

(a) (b)

Figure 9.6 (a) Interferogram of an aberrant aspherical wavefront
with a linear carrier, and (b) interferogram of a perfect aspherical
wavefront with a linear carrier.
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9.3 MOIRÉ FORMED BY TWO 
INTERFEROGRAMS WITH 
A CIRCULAR CARRIER

Let us now study the moiré patterns between an interfero-
gram with a circular carrier (defocusing) and an interfero-
gram of a perfect wavefront with defocusing (circular ruling).
All equations are now written in polar coordinates (S,θ), as
defined in Chapter 4, Section 4.3.1. The first image is an
aberrant interferogram with a circular carrier (defocusing),
for which the transmittance can be written as:

(9.20)

where W(S,θ) is the wavefront deformation, and kDS2 is the
radial spatial phase of the circular carrier.

Let us now superimpose on this interferogram another
reference interferogram of a nonaberrant, aspherical interfer-
ogram. This interferogram has perfect circular symmetry, but
it can be decentered in the positive direction of x a small
distance a with an irradiance transmittance given by:

(9.21)

(a) (b)

Figure 9.7 (a) Moiré produced by the superposition of two aspherical
interferograms (one aberrant), and (b) low-pass filtered moiré after
contrast enhancement.
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where Wr(S,θ) is the aspherical wavefront deformation of the
reference interferogram, and kDrS2 is the radial spatial phase
of the reference circular ruling.

The transmittance of the combination is the product of
these two individual transmittances, given by s(S,θ) as:

(9.22)

from which we obtain:

(9.23)

Using Equation 9.5, we obtain:

(9.24)

This result is valid for a spherical as well as aspherical ref-
erence interferogram.

s S k DS W S

k D S a ax W Sr r

( , ) cos ( ,

cos ( ,

θ θ

θ

= + −( )[ ] ×

× + + − −( )[ ]
1

1 2

2

2 2

s S k DS W S

k D S a ax W S

k DS W S

k D S a ax W S

r r

r r

( , ) cos ( , )

cos ( , )

cos ( , )

cos ( , )

θ θ

θ

θ

θ

= + −[ ] ×

× + − −[ ] +

+ −[ ] +

+ + − −[ ]

1

2

2

2

2 2

2

2 2

s S k
D D S a ax

W S W S

k
D D S a ax

W S W S

k DS W S

k D

r

r

r

r

( , ) cos
( , ) ( , )

cos
( , ) ( , )

cos ( , )

cos

θ
θ θ

θ θ

θ

= +
−( ) − +

− −( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

+
+( ) + −

− −( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

+ −( ) +

+

1
1
2

2

1
2

2

2 2

2 2

2

rr rS a ax W S2 2 2+ − −( )( , )θ



9.3.1 Moiré with Interferograms 
of Spherical Wavefronts

If the wavefront that produced the interferogram to be eval-
uated is nearly spherical, the reference interferogram must
have a spherical wavefront with defocusing, similar to a
Fresnel zone plate or Gabor plate. If the reference wavefront
is spherical and Wr(x,y) is equal to zero, then Equation 9.24
becomes:

(9.25)

Because the reference pattern is centered (a = 0), the first
term in the right-hand side of Equation 9.24 has zero spatial
frequency. The radial spatial frequency of the second term,
f2(S,θ), is:

(9.26)

the radial spatial frequency of the third term, f3(S,θ), is:

(9.27)

and the radial spatial frequency of the fourth term, f4(x,y), is:

(9.28)

where
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Finally, the frequency of the fifth term is the reference fre-
quency fr(S). Equation 9.17 represents the resulting irradi-
ance pattern, but when we observe moiré patterns the high-
frequency components are filtered out by any of many possible
methods (for example, by defocusing). 

Let us assume that the values of the linear carriers of
both interferograms are close to each other. We also assume
that the lowest frequency terms can be isolated by requiring
that the minimum radial frequency in the interferogram is
such that

(9.30)

for all points inside the moiré pattern.
If we use a low-pass filter that cuts out all spatial fre-

quencies equal to or greater than the reference frequency fr(S),
then the second term is eliminated because its frequency is
more than twice the carrier frequency. After the low-pass
filtering process we have:

(9.31)

which is an interferogram with a spherical reference wave-
front (defocus magnitude changed) that is modified or made
flat (defocus removed) when D = Dr. Also, a tilt is added with
a value of a. An example of an interferogram of this type is
shown in Figure 9.8a, and Figure 9.8b illustrates the refer-
ence interferogram with a perfect wavefront and circular car-
rier. The moiré pattern obtained by the superposition of these
two structures is illustrated in Figure 9.9a, and Figure 9.9b
shows the low-pass filtered moiré.

9.3.2 Moiré with Interferograms 
of Aspherical Wavefronts

If the wavefront to be evaluated is aspherical (see Figure 9.10),
the reference interferogram can also be aspherical. In this case,
Wr(x,y) is not equal to zero, and general Equation 9.24 must

f
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be used. We now have a null test for aspherical surfaces. The
moiré pattern produced by these two interferograms is shown
in Figure 9.11a, the low-pass filtered moiré in Figure 9.11b.

(a) (b)

Figure 9.8 (a) Interferogram of an aberrant spherical wavefront
with a circular carrier, and (b) reference interferogram of a perfect
spherical wavefront with a circular carrier.

(a) (b)

Figure 9.9 (a) Moiré produced by interferograms with spherical
wavefronts (one aberrant) with a circular carrier, and (b) filtered
moiré after contrast enhancement.

(a) (b)

Figure 9.10 (a) Interferogram of an aberrant aspherical wavefront
with a circular carrier, and (b) interferogram of a perfect aspherical
wavefront with a circular carrier.



9.4 SUMMARY OF MOIRÉ EFFECTS

Moiré methods are useful tools to detect aberrations in inter-
ferograms as well as for teaching demonstrations of the effect
of tilts and defocusing on interferograms. The apparent mag-
nification of the reference ruling can be changed. These effects
are useful in linear as well as circular rulings. Table 9.1
summarizes the main operations that can be performed with
moiré patterns of interferograms by modifying the axial posi-
tion (magnification) or the lateral position of the reference
ruling.

9.5 HOLOGRAPHIC INTERPRETATION 
OF MOIRÉ PATTERNS

The holographic approach to studying interferograms (see
Chapter 8) can also be applied to interpreting the moiré pat-
terns of interferograms. To illustrate, let us consider the case
of a linear reference ruling. Let us assume that the linear
ruling is illuminated with a plane wavefront perpendicularly
impinging on this ruling (Figure 9.12a). Three diffracted
beams will now illuminate the hologram. After passing
through the hologram, each of these flat wavefronts will gen-
erate its own three wavefronts: the zero-order wavefront, the
wavefront under reconstruction, and the conjugate wavefront.
So, on the other side of the hologram we will have a total of
nine wavefronts, as illustrated in Figure 9.13. The lowest and
uppermost wavefronts in this figure are the wavefront under

(a) (b)

Figure 9.11 (a) Moiré produced by interferograms of aspherical
wavefronts (one aberrant) with a circular carrier, and (b) filtered
moiré after contrast enhancement.



reconstruction and the conjugate wavefront, which correspond
respectively to the exp{–iz} and exp{+iz} components of the cos
function in the fourth term in Equation 9.7. We now have a
reconstructed image of the interferogram and a reconstructed

TABLE 9.1 Effect Produced by Displacement of the 
Reference Pattern

Reference Ruling Displacement

Reference Ruling Lateral Displacement
Axial Displacement 

(Magnification)

Linear Piston term (phase) Tilt (linear carrier)

Circular Tilt (linear carrier) Focus (circular carrier)

Figure 9.12 Moiré patterns between an interferogram and a ruling:
(a) with a recorded interferogram, and (b) with a live interferogram.
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image of the conjugate interferogram corresponding respec-
tively to the second and last terms in Equation 9.7. Near the
optical axis, almost overlapping, are the reconstructed wave-
front, its conjugate, and a flat wavefront, which come from the
third term and the constant term.

9.6 CONCLUSION

We must point out an important conclusion that can be derived
from the theory just described, particularly from Equation
9.24. If two interferograms are formed by the interference
between a flat reference wavefront and a distorted wavefront,
different in each case, then the moiré pattern formed by these

Figure 9.13 Holographic interpretation of moiré patterns; genera-
tion of nine wavefronts.
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two interferograms is identical to the interferogram that would
be obtained by the interference of the two distorted wavefronts.
In other words, the moiré pattern of two interferograms rep-
resents the difference between the wavefront distortions (aber-
rations) in these two interferograms; thus, any aberration
common to both interferograms is canceled out.
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10

Interferogram Analysis
without a Carrier

10.1 INTRODUCTION

In this chapter, we analyze interferometric techniques to
demodulate a single fringe pattern containing closed fringes.
Elsewhere in this book we have addressed the problem of
analyzing a single interferogram when a spatial carrier is
introduced (Takeda et al., 1982) — that is, whenever the
modulating phase of the interferogram contains a linear com-
ponent large enough to guarantee that the total modulating
phase would remain an increasing function in a given direc-
tion of the two-dimensional space. Why is it interesting to
demodulate a single interferogram or a series of interfero-
grams having no spatial or temporal carriers, knowing that
it is substantially more difficult? The answer is that, although
we always try to obtain a single interferogram or a series of
interferograms with spatial and/or temporal carriers (Malac-
ara et al., 1998), sometimes the very nature of the experimen-
tal setup does not allow us to obtain them. One reason could
be that we are studying fast transient phenomena and lack
the time necessary to introduce a carrier. In these cases,
though, we still want to demodulate the interferograms to
evaluate quantitatively the physical variable under study.



10.2 MATHEMATICAL MODEL 
OF THE FRINGES

A mathematical model for the measured signal, s(x,y), from
a single interferogram without a carrier is:

(10.1)

An example of such an interferogram can be seen in Figure
10.1a. It is convenient at this point to remind the reader that,
when a spatial carrier is introduced, the usual mathematical
model of the fringe pattern can be written as:

(10.2)

and the carrier frequency ω0 must be large enough to guar-
antee that the total phase will be a monotonic increasing
function of the x coordinate in this case. This last condition
is equivalent to opening all the fringes of the interferogram,
as shown in Figure 10.1d, where the phase φ(x,y) is the same

Figure 10.1 Process of spatial carrier introduction: (a) fringe
pattern without carrier; (b) fringe image with a small carrier; (c)
fringe image with the minimum amount of carrier, which permits
its demodulation using standard phase demodulation techniques;
and (d) maximum carrier that can be introduced.

s x y a x y b x y x y( , ) ( , ) ( , )cos ( , )= + [ ]φ

s x y a x y b x y x y( , ) ( , ) ( , )cos ( , )= + +[ ]ω φ0

(a) (b)

(c) (d)



except for the linear carrier term, which in this case is large
enough to open all the fringes. As we increase the linear
carrier, we can see that the central closed fringe moves away
from the center of the interferogram in the x direction until
this closed fringe moves outside the pupil of the interfero-
gram, as seen in Figure 10.1. If we continue to increase the
carrier frequency (tilting the reference mirror in the interfer-
ometer), we will observe that the open fringes straighten and
approach the maximum resolution of the digital camera used
to grab the interferogram.

In Figure 10.2a, the modulating phase of the interfero-
gram is:

(10.3)

where λ is the wavelength of the laser used in the interfer-
ometer. Figure 10.2b shows the wrapped phase of this inter-
ferogram. This radially symmetric phase corresponds to a
defocused wavefront. The main problem with closed fringes
is that the demodulated wavefront is not unique; that is, we

Figure 10.2 A simple closed-fringe interferogram: (a) fringe pattern
of a defocused wavefront; (b) desired demodulated phase; (c) wrong
phase, which produces the same fringes; and (d) yet another phase
that produces the same fringes.

φ λ( , ) ,x y x y x y= +( ) +( ) <4 12 2 2 2

(a) (b)
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can have many wavefronts for which the cosines are identical.
For example, the following two wavefronts would give the
same fringe pattern:

(10.4)

These two phases are shown in Figures 10.2c and 10.2d. Even
some spatial combination of these two phases can also give
the same fringe pattern. In fact, these two “wrong” solutions
can be obtained from Equation 10.1 relatively easily, as we
will see later in this chapter. Unfortunately, however, we are
not interested in either of these phases. The main feature that
distinguishes the phases in Equation 10.4 from the desired
one (Equation 10.3) is the smoothness of the desired solution.
The expected solution (Equation 10.3, Figure 10.2b) is
smoother than the competing ones (Equation 10.4, Figures
10.2c,d). So, the algorithms that have been designed to deal
with this problem in some form must introduce the fact that
the smoothest solution among the infinitely many competing
ones is the desired one. 

The first attempt to demodulate a single interferogram
with closed fringes was made by Kreis (1986). In this first
attempt a unidimensional Hilbert transform was used. The
problem with this approach is that the recovered phase is
always a monotonically increasing function of a space coordi-
nate, so in some way we must change the sign of the recovered
phase. This has been done quite often by an expert viewing
the interferogram on a computer screen.

One might wonder what would happen if we used some
of the phase determination formulas studied in this book to
find the modulating phase of an interferogram without a
carrier. Probably the simplest demodulating formula that can
be used for this task is the three-step phase-shifting formula
applied along the x spatial coordinate. For convenience, we
reproduce this simple three-step algorithm here:
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(10.5)

The parameter α is the phase step between the samples.
Because we have no spatial carrier, parameter α is undefined;
nevertheless, we can set a low value (e.g., α = 0.1; see Figure
10.3a) with the poor but sometimes useful result shown in
Figure 10.3b. The cosine of the demodulated phase is shown in
Figure 10.3c, where the phase distortion obtained is more clear.
We then encounter two problems with using the phase-shifting
formulas presented in this book: (1) phase distortion due to the
absence of a carrier, and (2) a monotonic demodulated phase
regardless of the real modulating phase. The phase shown in
Figure 10.3b was obtained using Equation 10.5 but is not what
we would like to have as a demodulated phase. What we expect
as the demodulated phase is shown in Figure 10.2b. Using any
phase demodulation formula given earlier in this book will give
us slightly better or similar results. To summarize, the diffi-
culty when dealing with a single, closed-fringe interferogram
resides in the fact that the fringe patterns given by:

(10.6)

all look alike, so even when these phases are clearly very
different they all give the same observed fringe pattern. In

Figure 10.3 Demodulation of a single interferogram with closed
fringes using a three-step phase-shifting algorithm: (a) fringe pattern
of a defocused wavefront; (b) incorrectly demodulated phase,
observing its monoticity; and (c) cosine of the incorrectly demodulated
phase in (b).
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the past, some researchers tried to automatically set the sign
of the demodulated phase as the one given by Equation 10.5.
This automatic sign correction turned out to be a very difficult
thing to achieve (as can be seen in Figure 10.4), and this
approach never gained wide acceptance.

In the following paragraphs we will analyze two recent
approaches to dealing with a single interferogram that con-
tains closed fringes. One approach is a generalization of the
phase-locked loop (PLL) interferometry that was analyzed in
Chapter 8. The PLL has been generalized by Servín et al.
(2001, 2004) to two dimensions, a procedure we refer to as the
regularized quadrature and phase tracker (RPT), or simply the
phase tracker, which involves interferogram demodulation by
sequentially tracking the local phase of the interferogram. The
other approach was first proposed by Larkin et al. (2001), who
used an isotropic Hilbert transform to avoid the distortion
found in the one-dimensional Hilbert transform used by Kreis
et al. (1986). Servín et al. (2003) proposed another fringe anal-
ysis technique based on and closely related to that proposed
by Larkin et al. (2001). This technique is, among other things,
an n-dimensional generalization of the work by Larkin et al.
(2001). In the work by Servín et al. (2003) and Larkin et al.
(2001), we must unwrap the orientation of the fringes using
an approach based on the works by Quiroga et al. (2002),
Ghiglia and Pritt (1998), and Servín et al. (1999).

Figure 10.4 A more complicated fringe pattern demodulated
using a simple phase-shifting algorithm: (a) fringe pattern, and (b)
incorrectly demodulated phase.

(a) (b)



10.3 THE PHASE TRACKER

A very simple yet useful way to demodulate closed fringe
interferograms is a system we refer to as the regularized
phase tracker. Suppose that we have a small neighborhood N
within an interferometer (for example, a 7 × 7 pixel region)
around the data pixel located at (x1,y1) of an interferogram.
Additionally, assume that such a neighborhood is so small
that within N the modulating phase may be considered linear.
That is, within N we assume that the following phase plane
well represents the local modulating phase:

(10.7)

Now we want to find the triad (φ0,ωx,ωy) that minimizes the
following quadratic cost functional:

(10.8)

where s′(x,y) is the high-pass filtered version of s(x,y) in Equa-
tion 10.1, used to remove the background term a(x,y). We can
find this minimum using a fixed-step gradient descent:

(10.9)

where the initial condition is equal to zero:

p x y x x y yx y( , ) = + −( ) + −( )φ ω ω0 1 1

U s x y
x x

y y
x y x y

x

yx y N

( , )

( , )

, , ( , ) cosφ ω ω
φ ω

ω
0

0 1

1

2

( ) = ′ −
+ −( )

+ −( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∈
∑

φ φ τ ∂
∂φ

ω ω τ ∂
∂ω

ω ω τ ∂
∂ων

0
1

0
0

1

1

k k

x
k

x
k

x

y
k

y
k

U

U

U

+

+

+

= −

= −

= −

φ ω ω0
0 0 00 0 0= = =, ,z y



When the optimum values for the phase plane parameters
have been found, we obtain a very good estimation of not only
the modulating phase φ0 but also the spatial frequencies
(ωx,ωy) at point (x1,y1). Now, let’s move one pixel away from
(x1,y1). We want to determine the phase plane parameters at
the neighborhood point (x1 + 1, y1). Assuming that the modu-
lating phase is a smooth continuous function, we can expect
that the phase plane given by the triad (φ0,ωx,ωy) at the neigh-
borhood pixel (x1 + 1, y1) would be very close to the triad
previously found at (x1,y1); therefore, we can use the previ-
ously found parameters for the phase plane (instead of zero)
as our starting point in the gradient descent formula. We have
moved only slightly toward minimizing the cost functional,
given that we are already very close to the sought minimum.
By applying this algorithm throughout the entire fringe pat-
tern image we can determine its modulating phase.

This simple RPT can be improved in several ways (e.g.,
Servín et al., 2004), but one immediate way of improving the
cost functional given by Equation 10.8 is to add the deriva-
tives of the fringe data. The new cost functional then reads:

(10.10)

where for clarity the (x,y) dependence has been omitted. The
parameter η can be greater than 1 (usually 10) because, nor-
mally, at low frequencies the derivative terms will make a
smaller contribution to the cost functional U. The phase plane
p(x,y) is as given before in Equation 10.7.

Another way to improve the RPT is by using a scanning
strategy. If the scanning strategy is conducted on a row-by-
row basis (as in a television set), then the RPT will not work
properly, particularly when it passes through local extrema
of the modulating phase φ(x,y), as shown in Figure 10.5. This
is because the RPT does not know how to handle the different
kinds of stable points, such as minima, maxima, or saddle
points, when the phase plane, p(x,y), of the RPT has no infor-
mation regarding the local curvature. A better way of dealing
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with this problem is to follow the scanning path traced by the
fringes of the interferogram. By scanning the interferogram
with this fringe-following strategy, we can eliminate crossing
through these extrema points. A consequence of this is that
the RPT will only “see” N open fringes within its small neigh-
borhood. To develop this scanning strategy, we can use an
algorithm published by Ströbel (1996), where the image is
scanned according to the quality of the different regions of
the image, beginning with regions having higher signal-to-
noise ratios. In our case, however the scanning strategy has
nothing to do with the local signal-to-noise ratio but will be
assigned arbitrarily as follows:

If s′(x,y) ≥ 0, we have “good” data.
If s′(x,y) < 0, we have “bad” data.

As mentioned, s′(x,y) is the high-pass filtered version of s(x,y)
in Equation 10.1. The opposite of these criteria can also be
used. In this case, the algorithm proposed by Ströbel (1996)
will drive the RPT system along the fringes as shown in
Figures 10.6 and 10.7. With this scanning strategy, the local
phase along the fringes will have an almost constant phase
value and only the local frequencies will smoothly change,
thus improving the demodulation of the fringe pattern.

Figure 10.5 Phase demodulation of a simple closed fringe inter-
ferogram using the phase tracker along with a demodulation
scanning strategy based on row-by-row, television-like scanning: (a)
fringe pattern of a defocused interferogram, and (b) incorrectly
demodulated phase.

(a) (b)



Figure 10.6 Demodulated fringe pattern using the phase tracker
and scanning strategy following the fringes of the interferogram: (a)
fringe pattern; (b) path suggested by the interferogram; (c), (d), (e)
path actually followed by the RPT during its demodulation process;
and (f) demodulated phase.

Figure 10.7 Demodulation process using the phase tracker
following the path of the fringes: (a) experimentally obtained fringe
pattern; (b) demodulation path derived from the fringes; (c), (d)
derivative of the fringe pattern along the x and y directions; (e)
snapshot of the demodulation sequence where the white zone is the
demodulated zone; and (f) correctly demodulated phase.

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)



10.4 THE N-DIMENSIONAL
QUADRATURE TRANSFORM

Now we will analyze another way to find the modulating
phase of a single closed-fringe interferogram which is based
on a quadrature filter. The aim of a quadrature transform can
be stated mathematically as:

(10.11)

where  is the two-dimensional vector position. As seen
in this equation, a cosinusoidal signal must be transformed
into a sinusoidal signal, which in turn it is useful to determine
the modulating phase of the interferogram by:

(10.12)

Therefore, as we have seen in the previous chapters, the
quadrature of a signal is of outmost importance when deter-
mining the modulating phase of an interferogram. In previous
chapters, having three or more phase-shifted interferograms
allowed us to obtain the modulating phase, but, in the case
considered here, in which just a single interferogram (without
spatial carrier) is available, we cannot apply these techniques.
In the last section, we discussed how the regularized phase
tracker can be used to demodulate a single interferogram, but
now we will examine a different method, which was proposed
by Larkin et al. (2001) and uses complex signal representation.
This method was extended using vectorial calculus to n dimen-
sions by Servín et al. (2003), an approach discussed here.

The first step toward obtaining the quadrature signal is
calculating the gradient of the (high-pass filtered) fringe pattern:

(10.13)

Because in most practical situations the contrast  is a
low-frequency signal, the first term of this last equation can
be neglected with respect to the second one to obtain:
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(10.14)

Hereafter, we will assume this approximation to be valid so
the approximation sign will be replaced by an equal sign. Of
course, for the special case of a constant contrast, ,
the above mathematical relation is exact. Applying the chain
rule for differentiation, we obtain:

(10.15)

If it were possible to know the real sign and magnitude of the
local frequency , we could use this information as follows:

(10.16)

and the quadrature of the interferogram can be obtained by
dividing both sides of this equation by the squared magnitude

of the local frequency :

(10.17)

We now have the result we were looking for, but this result
is a little misleading because, as far as we know, no linear

system applied to our fringe pattern  gives us in a
direct way. We can rewrite the above equation in a slightly
different way as:

(10.18)

Although it may seem superfluous, this rearrangement nev-
ertheless separates the problem into two complementary and
independent problems — namely, an isotropic two-dimen-
sional Hilbert transform given by:

(10.19)
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which is a vector field, and another two-dimensional vector
field given by:

(10.20)

which is the orientation vector field of the fringes. Therefore,
the quadrature of the signal is the scalar product of two vector
fields.

10.4.1 Using the Fourier Transform To Calculate 
the Isotropic Hilbert Transform

Servín et al. (2003) demonstrated that the two-dimensional

vector field  can also be calculated in the frequency
domain as:

(10.21)

where F{⋅} is the Fourier transform of a signal, and we define:

As can be seen from this equation the transform  is easily
computed in the frequency domain using a technique first
proposed by Larkin (2001) for use with complex numbers.
The filter within the square brackets can be put in complex
notation given that the complex plane is homeomorphic with
the Euclidian plane. By doing this, we can rewrite Equation
10.21 as (Larkin 2001):

(10.22)

the filter eiarctan(u/ν) was given the name vortex by Larkin et al.
(2001), and it is easy to see that it is equivalent in two
dimensions to the filter in Equation 10.21, provided the vec-
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, respectively. Equation 10.22 is a good practical way

to calculate the vector field .

10.4.2 The Fringe Orientation Term

The other factor in Equation 10.12 is the fringe orientation

term . This term is by far more difficult to calculate

than . The reason is that the orientation in an inter-
ferogram is a wrapped signal. The orientation term has an
associate fringe orientation angle given by:

(10.23)

As can be seen from this equation, the fringe orientation can
be readily known once the modulating phase is known, but
this seems to be a vicious circle. For starters, we do not know
the modulating phase of the interferogram. What is knowable
from the fringe irradiance is the fringe orientation angle mod-
ulo π, which is:

(10.24)

This formula is valid provided the fringe pattern s(x,y) has
been previously normalized. The orientation modulo π corre-
sponding to the computer-generated noiseless fringe patterns
in Figures 10.8a and 10.9a are shown in Figures 10.8b and
10.09b, respectively. To obtain the orientation modulo 2π
(shown in Figures 10.8c and 10.9c), we will need an unwrap-
ping process. This unwrapping process is not like the ones
seen before in this book, as this unwrapping must be per-
formed along the direction of the fringes, following the fringe
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path, which can be easily seen by comparing Figures 10.8b
and 10.8c. Here, we will outline the main ideas behind a
technique proposed by Quiroga et al. (2002) to unwrap the
fringe orientation angle modulo π to obtain the required ori-
entation angle modulo 2π. As a consequence, the relation
between the fringe orientation angle θπ modulo π with the
modulo 2π orientation angle θ2π is:

(10.25)

where k is an integer. Using this relation, we can multiply
both sides by 2 and write the wrapped W[⋅] orientation for-
mula as:

(10.26)

Figure 10.8 Fringe orientation of a simple closed-fringe inter-
ferogram: (a) interferogram of a defocused wavefront; (b) orientation
of the fringes modulo π (θπ) obtained from the irradiance using
Equation 10.22; and (c) orientation of the fringes modulo 2π (θ2π)
obtained from (b) by the process of unwrapping the orientation θπ

along the path of the fringes.

Figure 10.9 Fringe orientation unwrapping of a more complicated
interferogram: (a) interferogram; (b) fringe orientation modulo π
(θπ), and (c) unwrapped fringe orientation modulo 2π (θ2π).
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This relation states that the value for the wrapped angle,
W[2θπ], is indistinguishable from that for the wrapped version,
W[2θ2π]; therefore, it is possible to obtain the unwrapped θ2π
by unwrapping W[2θπ] (along the path of the fringes), dividing
the unwrapped signal 2θ2π by 2, and finally obtaining θ2π,
which is the quantity we are seeking.

Unwrapping W[2θπ], however, cannot be carried out by
standard path-independent techniques — for example, least
squares (Ghiglia and Pritt, 1998), where the modulating phase
of the interferogram is wrapped perpendicular to the fringe
direction. The fringe orientation modulo π must be unwrapped
along the fringe direction to obtain the desired fringe orienta-
tion modulo 2π to move from the image shown in Figure 10.8b
to the image in Figure 10.8c. Another equivalent condition is
that, in the presence of closed fringes, the wrapped orientation
phase W[2θπ] is not a consistent field, so path-dependent strat-
egies must be used. As shown in Figures 10.8b and 10.9b, along
the fringes of the interferogram is where the fringe orientation
is wrapped modulo π. Due to the large noise normally encoun-
tered in practice for W[2θπ] (due to the ratio of two derivatives
in Equation 10.23), again, we must use robust path-dependent
strategies. The algorithm that best fits these requirements is
the unwrapping algorithm based on the RPT (Servín et al.,
1999). A more detailed account of unwrapping the fringe ori-
entation angle and some interesting examples are provided by
Quiroga et al. (2002).

10.5 CONCLUSION

In this chapter, we reviewed two techniques to demodulate a
single fringe pattern having closed fringes. The first reviewed
technique, the regularized phase tracker (RPT), was initially
proposed by Servín et al. (2001, 2004). In this approach, the
fringe pattern can be considered as having a single spatial
frequency in a small neighborhood around the pixel being
demodulated. Within this neighborhood, the local phase can
be modeled by a plane. The optimum phase plane is built
using the optimum phase and optimum spatial frequencies.
Another approach was proposed by Larkin et al. (2001) and



extended to n dimensions by Servín et al. (2003). In this
method, the demodulating problem is split into two separate
problems — namely, an isotropic Hilbert transform multiplied
by the fringe orientation. These two methods allow us to
demodulate a single-image interferometer when the modulat-
ing phase is not monotonical. Before concluding, we should
mention yet another fully automatic technique that was pro-
posed by Marroquín et al. (1997, 1998) in which the modulat-
ing phase is considered a smooth Markovian field.
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11

Phase Unwrapping

11.1 THE PHASE UNWRAPPING PROBLEM

Optical interferometers can be used to measure a wide range
of physical quantities. Among the interesting data supplied
by the interferometer is the fringe pattern, which is a cosi-
nusoidal function phase modulated by the wavefront distor-
tions being measured. As shown in Chapter 1, a fringe pattern
or interferogram can be modeled by the expression:

(11.1)

where a(x,y) is a slowly varying background illumination;
b(x,y) is the amplitude modulation, which also is a low-fre-
quency signal; and φ(x,y) is the phase being measured. The
purpose of computer-aided fringe analysis is automatic detec-
tion of the two-dimensional phase variation, φ(x,y), that occurs
over the interferogram due to the spatial change of the cor-
responding physical variable. The continuous interferogram
is then imaged over a charge-coupled device (CCD) video
camera and digitized using a video frame grabber for further
analysis in a digital computer.

Several techniques can be used to measure the desired
spatial phase variation of φ(x,y), including phase-shifting
interferometry, which requires at least three phase-shifted

s x y a x y b x y x y( , ) ( , ) ( , )cos ( , )= + φ



interferograms. The phase shift among the interferograms
must be known over the entire interferogram. In this case,
we can estimate the modulating phase at each resolvable
image pixel. Phase-shifting interferometry is the technique
chosen first whenever atmospheric turbulence and mechani-
cal conditions of the interferometer remain constant over the
time required to obtain the three phase-shifted interfero-
grams. When these requirements are not met, we can analyze
just one interferogram, if carrier fringes are introduced to the
fringe pattern, to obtain a spatial carrier frequency interfer-
ogram. We can then analyze this interferogram using such
well-known techniques as the Fourier transform, spatial car-
rier demodulation, spatial phase shifting, and phase-locked
loop (PLL), among others. Except for the PLL technique,
which does not introduce any phase wrapping, in all other
methods the detected phase is wrapped. Carré’s method wraps
the phase modulo π, but all other methods wrap the phase
modulo 2π, due to the arc tangent function involved in the
phase estimation process.

Ideally, the functions that calculate the arc tangent must
have as input parameters not the final value of the tangent
but the values of the numerator (sinφ) and the denominator
(cosφ) to avoid losing useful information. This pair of values
allows calculation of the angle in the entire circle from 0° to
2π or from –π to +π. After we calculate the angle φ in the
interval from –π/2 to +π/2, a correction is made as shown in
Tables 11.1 and 11.2 to obtain the angle in the entire circle.
For this purpose, the signs of sinφ and cosφ are used. If the
range from –π to +π is desired, Table 11.1 is used. If the range
from 0° to +2π is desired, Table 11.2 is used.

An example of a phase map is given in Figure 11.1, where
we have represented the 2π dynamic range in gray levels.
Black represents the phase value of –π, and white the value
of π. All other gray levels represent intermediate and linearly
mapped phase values. The relationship between the wrapped
phase and the unwrapped phase can be stated as:

(11.2)φ φ πx y x y m x y i N j Mi j W i j i j, , , ; ;( ) = ( ) + ( ) ≤ ≤ ≤ ≤2 1 1



where φW(x,y) is the wrapped phase, φ(x,y) is the unwrapped
phase, and m(x,y) is an integer-valued number known as the
field number.

TABLE 11.1 Phase and Range of Values 
According to the Signs in the Numerator 
(sinφ) and Denominator (cosφ) in the 
Expression for tanφ

sinφ cosφ
Adjusted

Phase

sinφ > 0 cosφ > 0 φ
sinφ > 0 cosφ < 0 φ + π
sinφ < 0 cosφ < 0 φ – π
sinφ < 0 cosφ > 0 φ
sinφ > 0 cosφ = 0 π/2
sinφ = 0 cosφ < 0 π
sinφ < 0 cosφ = 0 3π/2
sinφ = 0 cosφ > 0 0

Note: The final range of phases is from –π to +π.

TABLE 11.2 Phase and Range of Values 
According to the Signs in the Numerator 
(sinφφφφ) and Denominator (cosφ) in the 
Expression for tanφ

sinφ cosφ
Adjusted

Phase

sinφ > 0 cosφ > 0 φ
sinφ > 0 cosφ < 0 φ + π
sinφ < 0 cosφ < 0 φ + π
sinφ < 0 cosφ > 0 φ + 2π
sinφ > 0 cosφ = 0 π/2
sinφ = 0 cosφ < 0 π
sinφ < 0 cosφ = 0 3π/2
sinφ = 0 cosφ > 0 0

Note: The final range of phases is from 0° to +2π.



The unwrapping problem is trivial for phase maps cal-
culated from good-quality fringe data for which both of the
following conditions are satisfied:

1. The signal is free of noise.
2. The Nyquist condition is not violated, which means

that the absolute value of the phase difference
between any two consecutive phase samples (pixels)
is less than π.

The Nyquist condition can be expressed mathematically by:

(11.3)

where Δx is the distance between the two consecutive pixels.
In other words, the wavefront slope has a maximum value
that cannot be exceeded.

Figure 11.2 illustrates the phase wrapping of a one-
dimensional function. The lower zigzag curve is the wrapped
function and the upper curve, passing through the small cir-
cles, is the unwrapped function. To unwrap, several of the
phase values should be shifted by an integer multiple of 2π
to any of the small circles. The vertical distance between the
circles is 2π. The phase step from pixel 2 to pixel 3 is smaller
than π if the phase goes from point A to point B, which is the
correct point; however, the phase step from point A to point
C, which is the incorrect point, is larger than π. This is because
the Nyquist condition is fulfilled. The phase step (pixel 3 to
pixel 4) going to the correct point, D, is larger than π, and the

Figure 11.1 Wrapped phase data mapped to gray levels for display
purposes.
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phase step going to the incorrect point, E, is smaller than π.
In this case, the correct and incorrect phase steps are reversed
because the Nyquist condition is not fulfilled. Thus, we can
also write the Nyquist condition as:

(11.4)

where Δφ(x,y) is the correct phase step between two consecu-
tive pixels. The problem here is that once the phase has been
calculated it is frequently difficult to determine if the Nyquist
condition has been violated or not. This uncertainty is because
we do not know which of the two possible phase jumps is the
correct one. Ideally, it is better to ensure that we have fringe
separation everywhere in the x and y directions larger than
half the pixel separation.

Assuming that the Nyquist condition is fulfilled at all
points, unwrapping is thus a simple matter of adding or sub-
tracting 2π offsets at each discontinuity encountered in the
phase data (Macy, 1983; Bone, 1991) or integrating the
wrapped phase differences along a given coordinate (Itoh,
1982; Ghiglia et al., 1987; Ghiglia and Romero, 1994).

The unwrapping procedure consists of finding the correct
field number for each phase measurement. In Figure 11.2,

Figure 11.2 Phase unwrapping in one direction, without noise,
and the appropriate Nyquist-limited sampling frequency.

1

Pixel

2 3 4 5 6 7 8 9 10 11 12

P
ha

se

B

D

E

13

1

1 2 2 2 1

10

14

A

A C

B
C

−2π

2π

4π

6π

8π

0
0

0

ΔΦ( , )x y < π



the field numbers, m(x), for each pixel are marked near the
wrapped value. Taking m(x1) = 0, we can easily see that this
field number has only three possibilities at each pixel, as
expressed by (Kreis, 1986):

(11.5)

Kreis (1986) has also described a method for unwrapping in
two dimensions. Unwrapping becomes more difficult when the
absolute phase differences between adjacent pixels at points
other than discontinuities in the arctan function are greater
than π. These discontinuities can be introduced by (Figure
11.3):

1. High-frequency, high-amplitude noise
2. Discontinuous phase jumps
3. Regional undersampling in the fringe pattern

Ghiglia et al. (1987) considered unwrapping the phase by iso-
lating these erroneous discontinuities before beginning the
unwrapping process. Erroneous discontinuities or phase incon-
sistencies can be detected when the sum of the wrapped-phase
differences around a square path of size L is not zero. Incon-
sistencies generate phase errors (unexpected phase jumps)
which propagate along the unwrapping direction. As a conse-
quence, the unwrapping process becomes path dependent; that
is, we can obtain different unwrapped phase fields depending
on the unwrapping direction chosen.

An important step toward obtaining a robust path-inde-
pendent phase unwrapper was made by Ghiglia and Romero
(1994), who applied the ideas of Fried (1977) and Hudgin
(1977) regarding least-squares integration of phase gradients
(Noll, 1978; Hunt, 1979; Takajo and Takahashi, 1988) to the
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unwrapping problem. The phase gradient required by Ghiglia
and Romero (1994) is obtained as wrapped-phase differences
along the x and y directions. This wrapped-gradient field is
then least-squares integrated to obtain the continuous phase.
More recently, Marroquín and Rivera (1995) extended the
technique of least-squares integration of wrapped-phase gra-
dients by adding a regularization term in the form of a norm
of potentials. Using this technique, it is possible to filter out
some noise in the unwrapped phase as well as interpolate the
solution over regions of invalid phase data (such as holes)
with a well-defined behavior.

Figure 11.3 Phase unwrapping (a) in the presence of noise and
(b) with oversampling.
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One drawback of the least-squares integration or its reg-
ularized extension stems from the assumption that the phase
difference between adjacent pixels is less than π in absolute
value. That is, these techniques take the wrapped differences
of the wrapped phase as if it were a true gradient field; unfor-
tunately, however, this is not the case when severely noisy
phase maps are being unwrapped. The phase gradient
obtained here is actually wrapped in regions of high phase
noise and high phase gradients. Using the least-squares
unwrapping technique in very noisy phase maps leads to
unwrapping errors due to a reduction of the dynamic range in
the unwrapped phase.

In areas in an interferogram where the spatial frequency
is low, phase unwrapping is relatively easy. Su and Xue (2001)
pointed out that, by filtering the interferogram with a Hanning
filter, phase unwrapping becomes more reliable in some cases.

11.2 UNWRAPPING CONSISTENT 
PHASE MAPS

In this section, we analyze two simple unwrapping techniques
that apply to consistent phase maps. The first one unwraps
full-field wrapped phase data. The second one deals with the
unwrapping problem of consistent data within an arbitrary
simple connected region.

11.2.1 Unwrapping Full-Field 
Consistent Phase Maps

The phase unwrapping technique shown in this section is one
of the simplest methods for unwrapping a good or nearly
consistent (small phase noise) smooth phase map. The tech-
nique consists of integrating phase differences along a scan-
ning path (Figure 11.4). Let us assume that the full-field
phase map is given by φW(x,y) in a regular two-dimensional
lattice L of size N × N pixels. We can unwrap this phase map
by unwrapping the first row (y = 0) of it and afterwards taking
the last value of it as our initial condition to unwrap along



the following row of the phase map in a positive direction. We
can do this along the first row by using the following formula:

(11.6)

where the wrapping function is V(x) = [x – 2π int(x/π)]2, valid
in the interval (–π, +π). This function is equal to V(x) =
tan–1(sin(x)/cos(x)) in the same range. In Equation 11.6, we
can use as our initial condition:

(11.7)

Having unwrapped along the first row, we can use the last
unwrapped phase value as our initial condition to unwrap the
following row (j = 1) in the backward direction; that is:

(11.8)

For the backward unwrapping direction (Equation 11.8), we
must use as our initial condition:

(11.9)

The unwrapping then proceeds to the next row (j = 2) in the
forward direction as:

(11.10)

Figure 11.4 Scanning path followed by the proposed full-field
phase unwrapper.
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and our initial condition is:

(11.11)

The scanning procedure just described is followed until the
full-field phase map is unwrapped. The phase surface obtained
using this sequential procedure is shown in Figure 11.5.

11.2.2 Unwrapping Consistent Phase Maps 
within a Simple Connected Region

On the other hand, what if we do not have a full-field phase
map? If the shape of the consistent phase map is bounded by
an arbitrary, simply connected region, such as the one shown
in Figure 11.6, then the previous algorithm (Equations 11.6
to 11.11) cannot be used. For this situation, we can apply the
following algorithm to unwrap a consistent phase map. To
start, define and set to zero an indicator function, σ(x,y), inside
the domain (D) of valid phase data (as shown in Figure 11.6).

Figure 11.5 Unwrapped full-field phase data using the sequential
technique.

Figure 11.6 An example of a simple connected region containing
valid phase data.
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Then, choose a seed or starting point inside D and assign to
it an arbitrary phase value of φ(x,y) = φ0. Mark the visited site
as unwrapped; that is, set σ(x,y) = 1. Now that the seed pixel
phase is defined, we can carry out the unwrapping process:

1. Choose a pixel, (x,y), inside D (at random or in any
prescribed order).

2. Test if the visited site, (x,y), inside D is already
unwrapped.

• If the selected site is marked as unwrapped (σ(x,y)
= 1), then return to the first statement.

• If the visited site is wrapped (σ(x,y) = 0), then test
for any adjacent unwrapped pixel, (x′,y′).

• If no adjacent pixel has already been unwrapped,
then return to the first statement.

• If an adjacent pixel, (x′,y′), is found to be unwrapped,
then take its phase value, φ(x′,y′), and use it to
unwrap the current site, (x,y), as:

(11.12)

where V(.) is the wrapping function defined before.
3. Mark the selected site as unwrapped (σ(x,y) = 1).
4. Return to the first statement until all the pixels in

D are unwrapped.

The algorithm just described will unwrap any simply con-
nected bounded region D having valid and consistent wrapped
phase data, as shown in Figure 11.7.

Figure 11.7 Noise-free phase unwrapped using the algorithm given
in Section 11.2.2.
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11.3 UNWRAPPING NOISY PHASE MAPS

We can still use the above-described algorithm to unwrap
inconsistent phase maps corrupted by a small amount of noise.
This can be done by marking the inconsistent wrapped phase
pixels and excluding them from the unwrapping process as
forbidden regions. Inconsistencies occur when multiples of 2π
rad cannot be added to each wrapped phase sample over a two-
dimensional grid to eliminate all adjacent phase differences
greater than π rad in magnitude. Marking the inconsistent
pixels is not practical as the noise increases greatly given that
the number of inconsistent marked pixels can grow very
quickly. For that reason, we will not provide the details of such
techniques here.

Although many algorithms have been proposed for phase
unwrapping in the presence of noise, we will limit our discus-
sion here to the two algorithms that we feel are the most
important for unwrapping inconsistent phase maps of smooth
continuous functions. These algorithms are least-squares inte-
gration of wrapped phase differences (Ghiglia 1994) and the
regularized phase tracking (RPT) unwrapper. Our discussion
will not address the algorithms and techniques that can han-
dle phase maps of noisy or discontinuous functions (Huntley,
1989, 1994; Huntley and Saldner, 1993; Buckland et al., 1995;
Ströbel, 1996), because we feel that these techniques fall
outside the scope of this book.

11.3.1 Unwrapping Using 
Least-Squares Integration

The least-squares technique was first introduced by Ghiglia
et al. (1994) to unwrap inconsistent phase maps. To apply this
method, begin by estimating the wrapped phase gradient
along the x and y direction; that is,

(11.13)
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Because we have an oversampled phase map, the phase dif-
ferences in Equation 11.13 will be everywhere in the range
(–π,+π); in other words, the estimated gradient will be
unwrapped. Now we can integrate the phase gradient in a
consistent way by means of a least-squares integration. The
integrated or continuous phase we are seeking will be the
one that minimizes the following cost function:

(11.14)

This expression applies whenever we have a full-field wrapped
phase. Let us assume that we have valid phase data only inside
a two-dimensional region marked by an indicator function,
σ(x,y); that is, we will have valid phase data for σ(x,y) = 1 and
invalid phase data for σ(x,y) = 0. We then can modify our cost
function to include the indicator function as follows:

(11.15)

The estimated unwrapped phase φ(x,y) can be found, for exam-
ple, by using a simple gradient descent at all pixels:

(11.16)

where k is the iteration number and τ is the convergence rate
of the gradient search system (typically around τ = 0.1). Among
the faster algorithms for obtaining the unwrapped phase are
the techniques of conjugate gradient or the transform methods
(Ghiglia and Romero, 1994).
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Consider the noisy phase map of Figure 11.8a. In this
map, the wrapped phase, φw(x,y), is obtained as the sum of two
Gaussians with different signs. Figure 11.8b shows the
unwrapped phase map obtained using the least-squares inte-
gration technique developed by Ghiglia and Romero (1994).
Figure 11.9b shows the phase after unwrapping and then
wrapping again for comparison purposes. This phase, again,
was obtained using the least-squares integration technique of
wrapped differences applied to the same phase map (Ghiglia
and Romero, 1994), but with more noise added. Note that the
method is not as successful as with less noise, and a substan-
tial decrease in the phase dynamic range can be observed.

Figure 11.8 (a) Computer-generated noisy phase map; (b)
unwrapped phase using least-squares integration of wrapped
differences.

Figure 11.9 (a) Highly noisy phase map; (b) phase map obtained
after unwrapping and then wrapping again for comparison pur-
poses. We can see that the technique fails to recover the full dynamic
range of the modulating phase because the wrapped first-order
difference is a bad estimator of the true phase gradient in such a
noisy phase map.

(a) (b)

(a) (b)



11.3.2 The Regularized Phase Tracking Unwrapper

From Equation 11.2 we can see that the unwrapping inverse
problem is ill posed; that is, the m(x,y) field is not uniquely
determined by the observations. This means that the unwrap-
ping problem cannot be solved unless additional (prior) infor-
mation about the expected unwrapped phase, φ(x,y), is
provided. Smoothness is a typical piece of prior information
that constrains the search space of unwrapped functions, and
this information can be incorporated into the unwrapping
algorithm using regularization theory (Marroquín and Rivera,
1995).

To regularize the phase unwrapping problem, it is nec-
essary to find a suitable merit function that uses at least
two terms that contribute to constraining the unwrapped
field we are seeking. These terms are related by the following
factors:

1. Fidelity between the estimated function and the
observations

2. Prior knowledge about the spatial behavior of the
unwrapped phase

It is then assumed that the phase function we seek is the one
that minimizes this merit function.

In classical regularization we use a pixel-wise error
between the sought function and the observed data and the
norm of a differential operator over the this function as reg-
ularizer. In the proposed RPT technique however, we assume
that in a small region of the image one can consider the data
smooth enough so it can be modeled by a plane. This plane
must be close to the observed phase map in the wrapped space
(statement 1, above). A phase plane such as this must adapt
itself to every region in the phase map so its local slope
changes continuously in the two-dimensional space. We pos-
tulate that the phase of the estimated fringe pattern, φ(x,y),
must minimize the following merit function at each site (x,y)
containing valid phase data:



(11.17)

and

(11.18)

The functions φW(x,y), and φ(x,y) are the wrapped and
unwrapped phases, respectively, estimated at pixel (x,y); L is
the two-dimensional domain having valid wrapped phase data;
and Nx,y is a small neighborhood around the coordinate (x,y).
As explained below, the function σ(ε,η) is an indicator field
that equals one if the site (ε,η) has already been unwrapped
and zero otherwise. We can see from Equation 11.18 that we
are approximating the local behavior of the unwrapped phase
by a plane for which the parameters φ(x,y), ωx(x,y), and ωy(x,y)
are determined in such a way that the merit function
Ux,y(φ,ωx,ωy) at each site (x,y) in L is minimized.

The first term in Equation 11.17 attempts to keep the
local phase model close to the observed phase map in a least-
squares sense within the neighborhood Nx,y (statement 1,
above). The second term enforces our assumption of smooth-
ness and continuity of the unwrapped phase (statement 2,
above) using only previously unwrapped pixels marked by
σ(x,y). We can see that the second term will contribute a small
amount to the value of the merit function Ux,y(φ,ωx,ωy) only
for smooth unwrapped phase functions. Note also that the
local phase plane is adapted simultaneously to the observed
data (in the wrapped space using the wrapping operator V[x])
and to the continuous unwrapped phase marked by σ(x,y).

To unwrap the phase map φW(x,y) we need to find the
minimum of the merit function Ux,y(φ,ωx,ωy) (Equation 11.17)
with respect to the fields φ(x,y), ωx(x,y), and ωy(x,y). To this
end, we propose to find a minimum of Ux,y(φ,ωx,ωy) according
to the sequential unwrapping algorithm described next.

The proposed unwrapping strategy in L is calculated as
follows. To begin, we set the indicator function to zero (m(x,y)
= 0 in L) and choose a seed or starting point inside L to begin
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the unwrapping process. We then optimize the chosen site for
Ux,y(φ,ωx,ωy) by adapting the triad φ0(x,y), ωx(x,y), ωy(x,y) until
a minimum is reached and mark the visited site as unwrapped;
that is, we set σ(x,y) = 1. Now that the seed pixel is unwrapped,
we can begin the unwrapping process as follows:

1. Choose a pixel inside L (at random or in any pre-
scribed order).

2. Test whether or not the visited site is unwrapped:
• If the selected site is marked as unwrapped (i.e.,

σ(x,y) = 1), then return to the first statement.
• If the visited site is wrapped (i.e., σ(x,y) = 0), then

test for any adjacent unwrapped pixel (x′,y′).
• If no adjacent pixel (x′,y′) has already been

unwrapped, then return to the first statement.
• If an adjacent pixel (x′,y′) is found to be unwrapped,

then take its optimized triad (φ,ωx,ωy) and use it as
the initial condition to minimize the merit function
Ux,y(φ,ωx,ωy) (Equation 11.18) at the chosen site (x,y).

3. When the minimum for Ux,y(φ,ωx,ωy) in (x,y) is
reached, mark the selected site as unwrapped (i.e.,
σ(x,y) = 1).

4. Return to the first statement until all the pixels in
L are unwrapped.

An intuitive way of regarding this iteration is as a “crystal
growing” (CG) process in which new molecules (planes) are
added to the bulk in that particular orientation (slope) to
minimize the local crystal energy given the geometric orien-
tation of the adjacent and previously positioned molecules.

We can use simple gradient descent to optimize Ux,y by
moving the triad (φ,ωx,ωy) as follows:

(11.19)
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where τ is the convergence rate of the gradient search system.
As mentioned before, the initial condition for Equation 11.19
is chosen from any adjacent unwrapped pixel. In practice, the
τ parameter in the first relation in Equation 11.19 can be
multiplied by about 10 to accelerate the convergence rate of
the gradient search.

The first global phase estimation just described is usually
very close to the actual unwrapped phase; if needed, one can
perform additional global iterations to improve the phase
estimation process. The additional iterations can be per-
formed using Equation 11.19, but we now take as our initial
condition the last estimated values at the same site (x,y) (not
the ones at a neighborhood site, (x′,y′), as done in the first
global CG iteration). Note that for the additional global phase
estimations, the indicator function σ(x,y) in Equation 11.17
is now everywhere equal to one; therefore, we can scan the
lattice in any desired order whenever all the sites are visited
at each global iteration. In practice, only one or two additional
global iterations are needed to reach a stable minimum of
Ux,y(φ,ωx,ωy) at each site (x,y) in the two-dimensional lattice L.

One can argue that only the first term in Equation 11.17
can suffice to unwrap the observed phase map, but the simpli-
fied system was found to give good results only for small phase
noise (between –0.2π and 0.2π). For higher amounts of phase
noise (between –0.7π and 0.7π), the second term (the regular-
izing plane over the unwrapped phase) makes a substantial
improvement in the noise robustness of the RPT system.

The parameter λ and the size of the neighborhood (Nx,y)
are related to the unwrapped phase bandwidth and to the
robustness of the RPT algorithm. For example, a very low-
frequency, highly inconsistent phase map the size of Nx,y

should be large so the RPT system can properly track the
smooth unwrapped phase in such a noisy field. When the size
of Nx,y has been chosen, the value of the λ parameter in
Equation 11.7 is not very critical. A value of λ = 2 was used
all over the results herein presented. The computational
speed of the RPT technique is related to the size of the neigh-
borhood (Nx,y) as well as the size of the lattice (L). In the
literature, the size of Nx,y has ranged from 5 × 5 pixels to 11



× 11 pixels. Given reasonably good phase maps, a neighbor-
hood Nx,y of 3 × 3 pixels can be sufficient, and the RPT system
will give very quick and reliable results.

As in a crystal growing process, the size of the neighbor-
hood (Nx,y) in the RPT technique is very critical. If it succeeds,
the RPT system will move the entire unwrapping system to
the correct attractor. If the crystal growing algorithm reaches
a wrong attractor, the RPT system will give a wrong result.
In these cases, we must try another neighborhood (Nx,y) for
the RPT system and compute the solution again.

Figure 11.10b shows the phase obtained from the noisy
phase map of Figure 11.10a after unwrapping using the RPT
unwrapper and then wrapping again for comparison purposes.
Inspecting this figure, we can appreciate the capacity of the
RPT system to remove noise while preserving, almost
unchanged, the original phase dynamic range. The noise
introduced in Figure 11.10a can roughly be considered to be
the maximum noise tolerated by the proposed RPT unwrap-
per. Notice how the unwrapped phase is almost unaffected
near the image boundaries despite the large amount of noise.

11.4 UNWRAPPING SUBSAMPLED
PHASE MAPS

Testing of aspherical wavefronts is routinely achieved in the
optical shop by the use of commercial interferometers. The

Figure 11.10 (a) Highly noisy phase map (also shown in Figure
11.9a). (b) Phase obtained using the regularized phase tracking (RPT)
technique and shown after unwrapping and then wrapping again for
comparison purposes. We can see that the RPT technique works better
than the least-squares technique (Figure 11.9b) for severe phase noise.

(a) (b)



testing of deep aspheres is limited by aberrations of the imag-
ing optics of the interferometer as well as the spatial resolution
of the CCD video camera used to gather the interferometric
data. The CCD video arrays typically come with 256 × 256 or
512 × 512 image pixels. The number of CCD pixels limits the
highest recordable frequency over the CCD array to π rad/pixel.
As seen in Chapter 2, this maximum recordable frequency is
known as the Nyquist limit of the sampling system. The
detected phase map of an interferogram having frequencies
higher than the Nyquist limit contains false fringes and is said
to be aliased. Another factor to take into account is the fact
that CCD detector elements have a finite size, which can be
almost as large as the pixel separation. In this case, the con-
trast of the sub-Nyquist sampled image is strongly reduced, as
described in Chapter 2 and illustrated in Figure 2.12. Thus,
aliasing fringes cannot be observed with these kind of detectors,
unless a CCD detector is used that has detector elements of a
size much smaller than their separation. Unfortunately, alias-
ing fringes can be recorded only if the size of each individual
detector is smaller than half the maximum spatial frequency
contained in the interferogram (the separation between the
detector can be larger).

A specially constructed sparse array detector that has
detector elements much smaller than their separation
(Greivenkamp, 1987) is quite expensive and must be specially
manufactured. This kind of detector can be simulated if some
elements are eliminated in an image obtained with a normal
detector for which the size of the elements is equal to their
separations. The undesired elements can be eliminated before
detection by means of placing a mask with holes over the
desired detector elements or after detection when digitally
processing the image. Of course, this simulation is not a real
practical advantage and only serves the purpose of testing
the unwrapping procedure. Aliasing fringes are quite useful
for unwrapping sub-Nyquist sampled phase maps when uti-
lizing any of the several methods described in the following
sections.



11.4.1 Greivenkamp’s Method

Subsampled phase maps cannot be unwrapped using stan-
dard techniques such as those presented so far; nevertheless,
we can still unwrap an undersampled phase map if aliasing
fringes are obtained and:

1. We have enough knowledge about the wavefront
being tested to null test the wavefront under analysis
(Greivenkamp, 1987; Servín and Malacara, 1996a).

2. The expected wavefront is smooth, in which case we
can introduce this prior knowledge into the unwrap-
ping process (Greivenkamp, 1987; Servín and Malac-
ara, 1996b).

To illustrate the principle of Greivenkamp’s sub-Nyquist
phase unwrapping in one dimension, Figure 11.11 shows the
unwrapped phase in a wavefront produced by an optical sys-
tem with spherical aberration. The correct unwrapping result
is shown in Figure 11.12a; however, if no previous knowledge
about the wavefront shape is available, the result in Figure
11.12b would be obtained.

Figure 11.11 Wrapped phase for a wavefront with spherical
aberration, with sub-Nyquist sampling.
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The undersampled interferogram can be imaged directly
over the CCD video array with the aid of an optical interfer-
ometer. If the CCD sampling rate is xs over the x direction,
and ys over the y direction and the diameter of the light-
sensitive area of the CCD is d, we can write the mathematical

Figure 11.12 Unwrapped phase for a wavefront with spherical
aberration, with sub-Nyquist sampling: (a) correct phase, and (b)
phase obtained if no previous knowledge is available.
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expression for the sampling operation over the irradiance of
the interferogram (Equation 11.1) as:

(11.20)

where the function S[s(x,y)] is the sampling operator over the
irradiance given by Equation 11.1, the symbol (**) indicates
a two-dimensional convolution, and circ(ρ/d) is the circular
size of the CCD detector. The comb function is an array of
delta functions with the same spacing as the CCD pixels. The
phase map of the sampled interferogram in Equation 11.20
can be obtained using, for example, three phase-shifted inter-
ferograms as follows:

(11.21)

where α is the phase shift. Using well-known formulae, we
can find the subsampled wrapped phase as:

(11.22)

where σ(x,y) is an indicator function that equals one if we
have valid phase data; zero, otherwise. As Equation 11.22
shows, the phase obtained is a modulo 2π of the true under-
sampled phase due to the arc tangent function involved in
the phase-detection process. Figure 11.13 shows an example
of a subsampled phase map of pure spherical aberration.
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11.4.2 Null Fringe Analysis of Subsampled 
Phase Maps Using a 
Computer-Stored Compensator

As mentioned earlier, one way to deal with deep aspherical
wavefronts is to use an optical, diffractive, or software com-
pensator. Optical or diffractive compensators reduce the num-
ber of aberration fringes so they can be analyzed without
aliasing. To construct the compensator, we must have a good
knowledge of the testing wavefront up to a few aberration
fringes. The remaining aberration fringes constitute the error
between the expected or ideal wavefront and the actual one
from the testing optics. In this way, we can analyze the
remaining uncompensated fringes using standard fringe
analysis techniques. Fortunately, in optical shop testing, we
typically have a good knowledge of the kind and amount of
aberration expected at the testing plane (in the final stages
of the manufacturing process). This knowledge allows us to
construct the proper optical or diffractive compensator. In
this section, we deal with another kind of compensator: the
software compensator (Servín and Malacara, 1996). The soft-
ware compensator does not have to be constructed (as an
optical or diffractive compensator); instead, it is calculated
by computer. This software compensator, however, does
require a specially constructed CCD video array having small
light detector size d with respect to the spatial separation,
(xs,ys) (see Equation 11.20).

Figure 11.13 Subsampled phase map corresponding to pure
spherical aberration.



If we assume that the expected or ideal wavefront, φi(x,y),
differs from the detected phase, φw(x,y), by only a few wave-
lengths, we can form an oversampled wrapped wavefront
error, Δφw(x,y), as:

(11.23)

We can then unwrap the wavefront error, Δφw(x,y), by using
standard unwrapping techniques. To obtain the unwrapped
testing wavefront, the unwrapped error and the ideal wave-
front are added:

(11.24)

where Δφ(x,y) is the unwrapped phase error. As mentioned
before, the limitation of the technique presented in this sec-
tion resides in the fact that the error wavefront (Equation
11.19) must be oversampled. This requirement is the same as
when an holographic or diffractive compensator is used. That
is, the wavefront being tested must be close enough to the
expected ideal wavefront to obtain a compensated interfero-
gram having spatial frequencies below the Nyquist upper
bound over the CCD array. In summary, the problem of build-
ing an optical or holographic compensator is replaced herein
by the construction of a special-purpose CCD video array or
construction of a mask of small holes in contact with the CCD
array. The considerable benefit of this approach is that, when
the CCD mask or the specially built CCD array is available,
the need to build special-purpose diffractive or holographic
compensators disappears. The use of this technique is illus-
trated in Figure 11.14. Figure 11.14a shows the analysis of a
subsampled phase map. This phase map is then compared,
using Equation 11.23, to the expected one shown in Figure
11.14b. Their phase difference (the phase error between them)
is shown in Figure11.14c. As in the case of using an optical
compensator, positioning of the CCD array used to collect the
interference irradiance is very critical. A mispositioning of the
compensator or, in this case, the CCD array can give erroneous
measurements.
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11.4.3 Unwrapping of Smooth Continuous 
Subsampled Phase Maps

In the last subsection, we have discussed the problem of
unwrapping undersampled phase maps. The method is based
on having a good enough prior knowledge of the kind and
amount of aberrations to perform null testing on the detected
phase map. This section generalizes the problem of unwrap-
ping undersampled phase maps to smooth wavefronts; that is,
the only prior knowledge about the wavefront being analyzed
is the smoothness. This is far less restrictive than the null
testing technique presented in the last section. Analysis of
interferometric data beyond the Nyquist frequency was first
proposed by Greivenkamp (1987), who assumed that the wave-
front being tested is smooth up to the first or second derivative.
Greivenkamp’s approach to unwrapping subsampled phase
maps consists of adding multiples of 2π each time a disconti-
nuity in the phase map is found. The number of times a 2π is
added is determined by the smoothness condition imposed on
the wavefront in its first or second derivative along the
unwrapping direction. Although Greivenkamp’s approach is
robust against noise, its weakness resides in the fact that it
is a path-dependent phase unwrapper.

The method of Servín and Malacara (1996) overcomes
the path dependency of the Greivenkamp approach but pre-
serves its noise robustness. In this case, an estimation of the

Figure 11.14 (a) Subsampled phase map obtained using Equation
11.19; (b) ideal or expected subsampled phase map; (c) phase error
between the two phase maps according to Equation 11.21.
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local wrapped curvature (or wrapped Laplacian) of the sub-
sampled phase map, φw(x,y) (Equation 11.22), is used to
unwrap the interesting deep aspherical wavefront. When we
have obtained the local wrapped curvature along the x and y
directions we can use least-squares integration to obtain the
unwrapped continuous wavefront. The local wrapped curva-
ture is obtained as:

(11.25)

If the absolute value of the discrete wrapped Laplacian given
by Equation11.25 is less than π, its value will be unwrapped.
We can then obtain the unwrapped phase, φ(x,y), by means of
the function that minimizes the following quadratic merit
function (least squares):

(11.26)

where σ(x,y) is an indicator or mask function that equals one
if we have valid phase data; zero, otherwise. The functions
Ux(x,y) and Uy(x,y) are given by:

(11.27)

The minimum of the merit function given by Equation 11.26
is obtained when its partial with respect to φ(x,y) equals zero;
therefore, the set of linear equations that must be solved is:

(11.28)
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Several methods can be used to solve this system of linear
equations; among others is the simple gradient descent shown
below:

(11.29)

where the parameter η is the rate of convergence of the gra-
dient search. The simple gradient descent is quite slow for
this application, so we have used a conjugate gradient to speed
up the computing time. Figure 11.15a shows a subsampled
phase map, and Figure 11.15b shows the unwrapped phase
in wire mesh.

11.4.4 Unwrapping the Partial 
Derivative of the Wavefront

Another method for unwrapping an oversampled interfero-
gram is to simulate a lateral shear interferogram, as shown
by Muñoz et al. (2003, 2004). Essentially this method is equiv-
alent to calculating a lateral shear interferogram, where the
slopes are smaller than in the original wavefront. A lateral
shear interferogram can be digitally obtained from a Twyman–
Green-like interferogram with phase differences φ(x,y), which
are written here as φij, by creating a new phase map given by
φij – φij+1. This phase map can be obtained with the following
trigonometric expression:

Figure 11.15 (a) Subsampled phase map of a wavefront with a
central obstruction. (b) Wire mesh of the unwrapped phase map
according to the least-squares integration of wrapped phase
curvature presented in this section.

(a) (b)

φ φ η ∂
∂φ

k kx y x y
U
x y

+ = −1( , ) ( , )
( , )



(11.30)

where

(11.31)

and

(11.32)

Hence, the sin and cosine values of φi and φi+1 can be obtained
from:

(11.33)

and

(11.34)

and in an identical manner for the pixel (i + 1). When these
functions have been obtained, they are substituted in Equa-
tion 11.30 to obtain the desired phase map. This map can be
interpreted as a lateral shear interferogram with a shear
equal to one pixel.

11.5 CONCLUSIONS

In this chapter, we have analyzed some important techniques
for unwrapping phase maps of continuous and smooth func-
tions. We presented two algorithms to unwrap good-quality
phase maps; the first one applies only to full-field phase maps
while the second one can be applied to a phase map bounded
by an arbitrary single connected shape. We have also presented
the unwrapping technique utilizing least-squares integration
of phase gradients to obtain the continuous phase being
sought. The main limitation of this approach is estimation of
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the phase gradient as the wrapped difference of two consecu-
tive pixels along the x and y directions. This gradient phase
estimation works well only for relatively small phase noise
because a very noisy phase map can have differences between
two adjacent pixels that exceed π or –π rad.

Next we discussed the two-dimensional regularized
phase tracking (RPT) phase unwrapping system, which is
capable of unwrapping severely degraded phase maps. This
unwrapping system tracks the instantaneous phase and its
gradient, adapting a plane to the estimated wrapped and
unwrapped phases simultaneously. In other words, the system
fits the best least-squares tangent plane at each pixel in the
wrapped and unwrapped phase space within a small neigh-
borhood (Nx,y). When the least-squares best plane is found at
a given location, the constant term of this plane, φ(x,y), gives
the estimated unwrapped phase at the (x,y) location, and the
slope, (ωx,ωy), estimates the local frequency.

Finally we analyzed two techniques for dealing with sub-
sampled interferograms. One of these is a null unwrapping
technique in which we must have information about the
wrapped wavefront up to a few wavelengths. The second tech-
nique is more general; the only prior assumption about the
testing wavefront is smoothness up to its second derivative.

REFERENCES

Bone, D.J., Fourier fringe analysis: the two dimensional phase
unwrapping problem, Appl. Opt., 30, 3627–3632, 1991.

Bryanston-Cross, P.J. and Quan, C., Examples of automatic phase
unwrapping applied to interferometric and photoelastic images,
in Proceedings of the 2nd International Workshop on Automatic
Processing of Fringe Patterns, Jüptner, W. and Osten, W., Eds.,
Akademie Verlag, Bremen, 1993.

Buckland, J.R., Huntley, J.M., and Turner, S.R.E., Unwrapping noisy
phase maps by use of a minimum-cost-matching algorithm,
Appl. Opt., 5100–5108, 1995.

Fried, D.L., Least-squares fitting a wave-front distortion estimate
to an array of phase difference measurements, J. Opt. Soc. Am.,
67, 370–375, 1977.



Ghiglia, D.C. and Romero, L.A., Robust two dimensional weighted
and unweighted phase unwrapping that uses fast transforms
and iterative methods, J. Opt. Soc. Am. A, 11, 107–117, 1994.

Ghiglia, D.C., Mastin, G.A., and Romero, L.A., Cellular automata
method for phase unwrapping, J. Opt. Soc. Am., 4, 267–280,
1987.

Greivenkamp, J.E., Sub-Nyquist interferometry, Appl. Opt., 26,
5245–5258, 1987.

Hudgin, R.H., Wave-front reconstruction for compensated imaging,
J. Opt. Soc. Am., 67, 375–378, 1977.

Hunt, B.R., Matrix formulation of the reconstruction of phase values
from phase differences, J. Opt. Soc. Am., 69, 393–399, 1979.

Huntley, J.M., Noise-immune phase unwrapping algorithm, Appl.
Opt., 28, 3268–3270, 1989.

Huntley, J.M., Phase unwrapping: problems and approaches, in
Proc. FASIG, Fringe Analysis ’94, York University, U.K., 1994.

Huntley, J.M. and Saldner, H., Temporal phase-unwrapping algo-
rithm for automated interferogram analysis, Appl. Opt. 21,
3047–3052, 1993.

Huntley, J.M., Cusack, R., and Saldner, H., New phase unwrapping
algorithms, in Proceedings of the 2nd International Workshop
on Automatic Processing of Fringe Patterns, Jüptner, W. and
Osten, W., Eds., Akademie Verlag, Bremen, 1993.

Itoh, K., Analysis of the phase unwrapping algorithm, Appl. Opt.
21, 2470–2473, 1982.

Kreis, T., Digital holographic interference-phase measurement using
the Fourier-transform method, J. Opt. Soc. Am. A, 3, 847–855,
1986.

Macy, W. Jr., Two-dimensional fringe pattern analysis, Appl. Opt.,
22, 3898–3901, 1983.

Marroquín, J.L. and Rivera, M., Quadratic regularization function-
als for phase unwrapping, J. Opt. Soc. Am. A, 12, 2393–2400,
1995.

Muñoz, J., Stroknik, M., and Páez, G., Phase recovery from a single
undersampled interferogram, Appl. Opt., 42, 6846–6852, 2003.



Muñoz, J., Páez, G., and Stroknik, M., Two-dimensional phase
unwrapping of subsampled phase-shifted interferograms, J.
Mod. Opt., 51, 49–63, 2004.

Noll, R.J., Phase estimates from slope-type wave-front sensors, J.
Opt. Soc. Am., 68, 139–140, 1978.

Servín, M. and Malacara, D., Sub-Nyquist interferometry using a
computer stored reference, J. Mod. Opt., 43, 1723–1729, 1996a.

Servín, M. and Malacara, D., Path-independent phase unwrapping
of subsampled phase maps, Appl. Opt., 35, 1643–1649, 1996b.

Ströbel, B., Processing of interferometric phase maps as complex-
valued phasor images, Appl. Opt., 35, 2192–2198, 1996.

Su, X. and Xue, L., Phase unwrapping algorithm based on fringe
frequency analysis in Fourier-transform profilometry, Opt. Eng.,
40, 637–643, 2001.

Takajo, H. and Takahashi, K., Least squares phase estimation from
phase differences, J. Opt. Soc. Am. A, 5, 416–425, 1988.



12

Wavefront Curvature Sensing

12.1 WAVEFRONT DETERMINATION 
BY SLOPE SENSING

Wavefront slopes can be measured by using testing methods
that measure the transverse ray aberrations in the x and y
directions, which are directly related to the partial derivatives
of the wavefront under analysis. Many of these tests use
screens; two typical examples are the Hartmann and the
Ronchi tests described in Chapter 1. Another system that
measures the wavefront slopes is the lateral shearing inter-
ferometer, also described in Chapter 1. The transverse aber-
rations are related to the wavefront slopes. To obtain the
shape of the testing wavefront we must use an integration
procedure as described before. In this chapter, we describe
another method to obtain the wavefront by measuring local
curvatures using diffraction images.

12.2 WAVEFRONT CURVATURE SENSING

The observation of defocused stellar images, known as the
star test, has been used for many years as a sensitive method
for detecting small wavefront deformations. The principle of
this method is based on the fact that the illumination in a
defocused image is not homogeneous if the wavefront has



deformations. These deformations can be interpreted as vari-
ations in the local curvature of the wavefront. If the focus is
shortened, the light energy will be concentrated at a shorter
focus and vice versa. An obvious consequence is that the
illuminations at the two planes being observed, located sym-
metrically with respect to the focus, have different illumina-
tion densities. For a long time, this test was used primarily
as a qualitative visual test.

12.2.1 The Laplacian and Local 
Average Curvatures

Roddier (1988) and Roddier et al. (1988) proposed a quanti-
tative wavefront evaluation method indirectly based on the
star test principle which measures wavefront local curvatures.
The local curvatures cx and cy of a nearly flat wavefront in
the x and y directions are given by the second partial deriv-
atives of this wavefront as follows:

(12.1)

Hence, the Laplacian defined by:

(12.2)

is twice the value of the average local curvature ρ(x,y). This
expression is known as the Poisson equation. To solve the
Poisson equation to obtain the wavefront deformations W(x,y),
the following must apply:

1. The average local curvature distribution, ρ(x,y), is a
scalar field and no direction is involved (as in the
wavefront slopes).

2. The radial wavefront slopes at the edge of the circular
pupil are used as Neumann boundary conditions.

As described by Roddier et al. (1988), the simplest method to
solve the Poisson equation when the Laplacian has been
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determined is the Jacobi iteration algorithm. Noll (1978)
showed that Jacobi’s method is essentially the same as that
derived by Hudgin (1977) to find the wavefront from slope
measurements. Equivalent iterative Fourier methods to
obtain the wavefront without having to solve the Poisson
equation directly are described in Section 12.3.4.

12.2.2 Irradiance Transport Equation

Let us consider a light beam propagating with an average
direction along the z-axis after passing through a diffracting
aperture (pupil) on the x,y plane. The irradiance as well as
the wavefront shape continuously change along the trajectory.
As proved by Teague (1983), the wave disturbance u(x,y,z) at
a point (x,y,z) can be found with good accuracy, even with a
diffracting aperture with sharp edges, using the Huygens–
Fresnel diffraction theory if a paraxial approximation is
taken. This approximation considers the Huygens wavelets to
be emitted in a narrow cone and uses a parabolic approxima-
tion for the wavefront shape of each wavelet. This can be
considered a geometrical optics approximation. Teague (1983)
and Steibl (1984) showed that if we assume a wide diffracting
aperture, much larger than the wavelength, the disturbance
at any plane with any value of z can be found with the
differential equation:

(12.3)

where k = 2π/λ. We can consider a solution to this equation
of the form:

(12.4)

where I(x,y,z) is the irradiance. If we substitute this distur-
bance expression into the differential equation, after some
algebraic steps we can obtain a complex function that should
be made equal to zero. Then, equating real and imaginary
parts to zero, we obtain:
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(12.5)

and

(12.6)

where the (x,y,z) dependence has been omitted for notational
simplicity and the Laplacian (∇2) and gradient (∇) operators
work only on the lateral coordinates x and y. The first expres-
sion is the phase transport equation, which can be used to find
the wavefront shape at any point along the trajectory. The
second expression is the irradiance transport equation.
Ichikawa et al. (1988) demonstrated phase retrieval based on
this equation. Following an interesting discussion by Ichikawa
et al. (1988), we can note in the irradiance transport equation
the following interpretation for each term:

1. The gradient ∇W(x,y,z) is the direction and magni-
tude of the local tilt of the wavefront, and ∇I(x,y,z) is
the direction in which the irradiance value changes
with maximum speed. Thus, their scalar product,
∇I(x,y,z)•∇W(x,y,z), is the irradiance variation along
the optical axis z due to the local wavefront tilt.
Ichikawa et al. (1988) referred to this as a prism term.

2. The second term, I(x,y,z)∇2W(x,y,z), can be inter-
preted as the irradiance along the z-axis caused by
the local wavefront average curvature. Ichikawa et
al. (1988) referred to this as a lens term.

In sum, these terms describe the variation of the beam irra-
diance caused by the wavefront deformations as it propagates
along the z-axis. This means that the transport equation is a
geometrical optics approximation, valid in the absence of
sharp apertures and as long as the aperture is large enough
compared to the wavelength. To gain even greater insight into
the nature of this equation, we can rewrite it as:

(12.7)
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and, recalling that ∇W is a vector representing the wavefront
local slope, we can easily see that the transport equation
represents the law of light energy conservation, which is anal-
ogous to the law of mass or charge conservation, frequently
expressed by:

(12.8)

where ρ and ν are the mass or charge density and the flow
velocity, respectively.

12.2.3 Laplacian Determination with 
Irradiance Transport Equation

Roddier et al. (1990) used the transport equation to measure
the wavefront. Let P(x,y) be the transmittance of the pupil
which is equal to one inside the pupil and zero outside. Fur-
thermore, we assume that the illumination at the plane of
the pupil is uniform and equal to a constant I0 inside the
pupil. Hence, the irradiance gradient ∇I(x,y,0) = 0 everywhere
except at the edge of the pupil where:

(12.9)

where δc is a Dirac distribution around the edge of the pupil,
and n is a unit vector perpendicular to the edge and pointing
outward. Substituting this gradient into the irradiance trans-
port equation we obtain:

(12.10)

where the derivative on the right-hand side of the expression
is the wavefront derivative in the outward direction, perpen-
dicular to the edge of the pupil. Curvature sensing consists of
taking the difference between the illuminations observed in
two planes located symmetrically with respect to the diffracting
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stop, as shown in Figure 12.1. Thus, the measured irradiances
at these two planes are:

(12.11)

When the wavefront is perfectly flat at the pupil, the Lapla-
cian at all points inside the pupil and the radial slope at the
edge of the pupil are both zero. Then, I2(x,y,–Δz) is equal to
I1(x,y,Δz). Having obtained these data, we can form the so-
called sensor signal as:

(12.12)

Substituting Equation 12.27 into Equation 12.29 yields:

(12.13)

Figure 12.1 Irradiance measured in two planes placed symmetri-
cally with respect to the pupil.

I1
I2

Wavefront

Real
observing
plane

Virtual
observing
plane

Pupil

Optical axisz = 0

ΔzΔz

I x y z I
I x y z

z
z

I x y z I
I x y z

z
z

z

z

1 0
0

2 0
0

( , , )
( , , )

( , , )
( , , )

Δ Δ

Δ Δ

= + ⎛
⎝

⎞
⎠

− = − ⎛
⎝

⎞
⎠

=

=

∂
∂

∂
∂

s x y z
I I
I I I

I x y z
z

z
z

( , )
( , , )Δ Δ= −

+
= ⎛

⎝
⎞
⎠ =

1 2

1 2 0 0

1 ∂
∂

I I
I I

W x y
n

P x y W x y zc
1 2

1 2

2−
+

= − ∇⎛
⎝

⎞
⎠

∂
∂

δ( , )
( , ) ( , ) Δ



Thus, with the irradiances I1 and I2 in two planes located
symmetrically with respect to the pupil (z = 0), we obtain the
left-hand term of this expression. This gives us the Laplacian
of W(x,y) (average local curvature) for all points inside the
aperture and the wavefront slope, ∂W/∂n, around the edge of
the pupil, P(x,y), as a Neumann boundary condition, to be
used when solving Poisson’s equation.

The two planes on which the irradiance has to be mea-
sured are symmetrically located with respect to the diffracting
pupil. In other words, one plane is real because it is located
after the pupil, but the other plane is virtual, because it is
located before the pupil. In practice, this problem has an easy
solution because the diffracting aperture is the pupil of a lens
to be evaluated, typically a telescope objective.

As we see in Figure 12.2, a plane at a distance l inside
the focus is conjugate to a plane at a distance Δz after the
pupil. On the other hand, if a small lens with focal length f/2
is placed at the focus of the objective, a plane at a distance l
outside the objective focus is conjugate to a plane at a distance
Δz before the pupil. In both cases, the distance Δz and the
distance l are related by:

(12.14)

Roddier and Roddier (1991b) pointed out that a small lens
with length f/2 is not necessary if l is small compared with f.
We must take into account that one defocused image is rotated
180° with respect to the other, as well as any possible differ-
ence in the magnification of the two images. The important
consideration is that the subtracted and added irradiances in
the two measured images must correspond to the same point
(x,y) on the pupil.

The measurements of the irradiance have to be made close
enough to the pupil so the diffraction effects are negligible and
the geometric approximation remains valid. Let us assume that
the wavefront to be measured has some corrugations and defor-
mations of scale r0 (maximum spatial period). With the diffrac-
tion grating equation we see that these corrugations spread

Δz
f f l
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out the light over a narrow cone with an angular diameter α
= λ/r0. Thus, the illumination in the plane of observation can
be considered a blurred pupil image. Let us now impose the
condition that the maximum allowed blurring at a distance Δz
is equal to r0/2. With this condition it is possible to show that
the geometrical optics approximation implied in the transport
irradiance equation is valid only if Δz is sufficiently small, so
that the following condition is satisfied:

(12.15)

It is interesting to see that the distance Δz is one fourth the
Rayleigh distance in Talbot autoimaging, as described in
Chapter 1. This result is to be expected, as then the shadow
of the grating is geometrical. If the light angular diameter
spread (α) is known (for example, if this is equal to the atmo-
spheric light seen in a telescope), then we can also write:

Figure 12.2 Two conjugate planes, one plane before refraction on
the optical system, at a distance Δz from the pupil, and the second
plane after refraction, at a distance l from the focus of the system:
(a) with the first plane at the back of the pupil and the second plane
inside of focus; and (b) with the first plane at the front of the pupil
and the second plane outside of focus, using an auxiliary small lens
with focal length f/2.
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(12.16)

When measuring in the converging beam, this condition
implies that the defocusing distance l should be large enough
so we have:

(12.17)

In conclusion, the minimum defocusing distance depends
on the maximum spatial frequency of the wavefront corruga-
tion we want to measure. This frequency also determines the
density of sampling points to be used to measure the irradi-
ance in the defocused image.

12.2.4 Wavefront Determination with 
Iterative Fourier Transforms

Hardy et al. (1977) measured slope differences to obtain the
curvatures from which the Poisson equation can be solved to
obtain the wavefront. The curvature in the x direction is taken
as the difference between two adjacent tilts in this direction,
and in the same manner the curvature along the y-axis is
obtained. The average of these curvatures can then be calcu-
lated. They used the Hudgin (1977) algorithm to obtain this
solution.

Roddier and Roddier (1991a) and Roddier et al. (1990)
reported a method for obtaining the wavefront deformations,
W(x,y), from a knowledge of the Laplacian operator by solving
the Poisson equation using iterative Fourier transforms. To
understand this method, let us take the Fourier transform of
the Laplacian operator of the wavefront as follows:

(12.18)

On the other hand, from the derivative theorem in Section
2.3.4, we have:
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(12.19)

and similarly for the partial derivative with respect to y. In
an identical manner we can also write:

(12.20)

Thus, it is easy to prove that

(12.21)

Hence, in the Fourier domain the Fourier transform of the
Laplacian operator translates into a multiplication of the Fou-
rier transform of the wavefront W(x,y) by fx

2 + fy
2.

The wavefront can be calculated if measurements of the
slopes along x and y are available, as in the case of the
Hartmann and Ronchi tests:

(12.22)

This simple approach works for a wavefront without any
limiting pupil. In practice, however, the Laplacian operator
is multiplied by the pupil function to take into account its
finite size; thus, its Fourier transform is convolved with the
Fourier transform of the pupil function. As a result, this
procedure does not give correct results.  To extrapolate the
fringes outside of the pupil an apodization in the Fourier space
(i.e., a filtering of the frequencies produced by the pupil bound-
aries) is necessary, as in the Gershberg algorithm described
earlier in this book. Dividing by fx

2 + fy
2 produces this filtering.

As a result of this filtering, just as in the Gershberg algorithm,
and after taking the inverse Fourier transform, the wavefront
extension is not restricted to the internal region of the pupil
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but extends outside the initial boundary. The complete proce-
dure to find the wavefront is thus an iterative process, as
described in Figure 12.3.

We can also retrieve the wavefront by taking the Fourier
transform of the wavefront Laplacian operator, dividing it by
fx

2 + fy
2, and taking the inverse Fourier transform as follows:

(12.23)

Figure 12.3 Iterative Fourier transform algorithm used to find
the wavefront from the measured slopes. (Adapted from Roddier
and Roddier, 1991b.)
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An iterative algorithm quite similar to the one just
described, based on this expression, has also been proposed by
Roddier and Roddier (1991b), as shown in Figure 12.4. The
Laplacian is measured by the method described earlier with
two defocused images. The Neumann boundary conditions are
taken by setting the radial slope equal to zero within a narrow
band surrounding the pupil. To better understand this bound-
ary condition we can consider the wavefront curvature on the
edge of the pupil as the difference between the slopes on each
side of the edge of the pupil. If the outer slope is set to zero,
the curvature has to be equal to the inner slope. In other words,

Figure 12.4 Iterative Fourier transform algorithm used to find the
wavefront from measurement of the Laplacian operator. (Adapted
from Roddier and Roddier, 1991b.)
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the edge radial slope is not arbitrarily separated from the inner
curvature if this external slope is made equal to zero.

12.3 WAVEFRONT DETERMINATION 
WITH DEFOCUSED IMAGES

If the defocusing distance cannot be made large enough, the
geometrical optics approximation assumed by the irradiance
transport equation is not satisfied. In this case, diffraction
effects are important, just as in the classical star test. The
method described in the preceding section cannot be applied, so
different iterative methods must be used. Gershberg and Saxton
(1972) described an algorithm using a single defocused image:

1. An arbitrary guess of the wavefront deformations
(phase and pupil transmission) is made. The pupil
transmission is frequently equal to one and the phase
can be anything.

2. The defocused image (amplitude and phase) in the
observation plane is computed with a fast Fourier
transform.

3. The calculated amplitude is replaced by the observed
amplitude (square root of the observed intensity),
keeping the calculated phase.

4. An inverse Fourier transform gives a new estimate
of the incoming wavefront amplitude and phase
(deformations).

5. The calculated input amplitude is replaced by the
known input amplitude (pupil transmission), keeping
the calculated phase.

These steps are iterated until a reasonable small difference
between measured and calculated amplitudes is obtained.
This algorithm quickly converges at the beginning but then
tends to stagnate.

Based on the work by Fienup and Wackermann (1987)
and Misell (1973a,b), an improved method that converges
more easily using two defocused images was described by
Roddier and Roddier (1991a). This method was used to test
the defective primary mirror of the Hubble telescope.



12.4 CONCLUSIONS

In this chapter, we have presented the most important tech-
niques for testing optical wavefronts by estimating the slope
and curvature changes as the wavefront propagates along the
experimental setup. We have seen that the main advantage
of the screen and curvature methods (especially if one is using
a low-resolution CCD camera to capture the desired data) is
the wider measuring dynamic range. That is, these methods
allow us to measure a greater number of aberrant waves than
standard interferometric methods such as temporal phase
shifting. This increase of measuring range comes at the price
of a proportional sensitivity reduction. While commercial
phase-shifting interferometers can have a sensitivity as high
as λ/100, slope and curvature test typically can reach a λ/10
accuracy. An important advantage of curvature sensing over
all other testing methods analyzed in this book is its capacity
to measure large optics in situ, without the need for any
special experimental arrangement other than the optics
where the lenses or mirrors are used.
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